Vitamin K Abstracts 1

© 2013

Vitamin K2. Monograph

            (2009) Download

High dietary menaquinone intake is associated with reduced coronary calcification

            (Beulens, Bots et al. 2009) Download

BACKGROUND: Dietary vitamin K is thought to decrease risk of cardiovascular disease by reducing coronary calcification, but inconsistent results are reported. This may be due to different effects of vitamin K(1) (phylloquinone) and vitamin K(2) (menaquinone, MK), but few studies included both. METHODS: We investigated the association of intake of phylloquinone and menaquinone, including its subtypes (MK4-MK10), with coronary calcification in a cross-sectional study among 564 post-menopausal women. Phylloquinone and menaquinone intake was estimated using a food-frequency questionnaire. RESULTS: Sixty-two percent (n=360) of the women had coronary calcification based on 1.5-mm thick slices. Phylloquinone intake was not associated with coronary calcification with a relative risk (RR) of 1.17 (95%-confidence interval: 0.96-1.42; p(trend)=0.11) of the highest versus lowest quartile. Menaquinone intake was associated with decreased coronary calcification with an RR of 0.80 (95%-CI: 0.65-0.98; p(trend)=0.03). CONCLUSION: This study shows that high dietary menaquinone intake, but probably not phylloquinone, is associated with reduced coronary calcification. Adequate menaquinone intakes could therefore be important to prevent cardiovascular disease.

Matrix-Gla protein and vascular calcification: the negative role of oral anticoagulant therapy

            (Cozzolino 2009) Download


The circulating inactive form of matrix Gla Protein (ucMGP) as a biomarker for cardiovascular calcification

            (Cranenburg, Vermeer et al. 2008) Download

OBJECTIVE: Matrix gamma-carboxyglutamate (Gla) protein (MGP) is a vitamin K-dependent protein and a strong inhibitor of vascular calcification. Vitamin K deficiency leads to inactive uncarboxylated MGP (ucMGP), which accumulates at sites of arterial calcification. We hypothesized that as a result of ucMGP deposition around arterial calcification, the circulating fraction of ucMGP is decreased. Here we report on the development of an ucMGP assay and the potential diagnostic utility of monitoring serum ucMGP levels. METHODS AND RESULTS: An ELISA-based assay was developed with which circulating ucMGP can be determined. Serum ucMGP levels were measured in healthy subjects (n = 165) and in four patient populations; patients who underwent angioplasty (n = 30), patients with aortic stenosis (n = 25), hemodialysis patients (n = 52), and calciphylaxis patients (n = 10). All four patient populations had significantly lower ucMGP levels. In angioplasty patients and in those with aortic stenosis, some overlap was observed with the control population. However, in the hemodialysis and calciphylaxis populations, virtually all subjects had ucMGP levels below the normal adult range. CONCLUSION: Serum ucMGP may be used as a biomarker to identify those at risk for developing vascular calcification. This assay may become an important tool in the diagnosis of cardiovascular calcification.

Uncarboxylated matrix Gla protein (ucMGP) is associated with coronary artery calcification in haemodialysis patients

            (Cranenburg, Brandenburg et al. 2009) Download

Matrix gamma-carboxyglutamate (Gla) protein (MGP) is a potent local inhibitor of cardiovascular calcification and accumulates at areas of calcification in its uncarboxylated form (ucMGP). We previously found significantly lower circulating ucMGP levels in patients with a high vascular calcification burden. Here we report on the potential of circulating ucMGP to serve as a biomarker for vascular calcification in haemodialysis (HD) patients. Circulating ucMGP levels were measured with an ELISA-based assay in 40 HD patients who underwent multi-slice computed tomography (MSCT) scanning to quantify the extent of coronary artery calcification (CAC). The mean ucMGP level in HD patients (193 +/- 65 nM) was significantly lower as compared to apparently healthy subjects of the same age (441 +/- 97 nM; p < 0.001) and patients with rheumatoid arthritis (RA) without CAC (560 +/- 140 nM; p < 0.001). Additionally, ucMGP levels correlated inversely with CAC scores (r = -0.41; p = 0.009), and this correlation persisted after adjustment for age, dialysis vintage and high-sensitivity C-reactive protein (hs-CRP). Since circulating ucMGP levels are significantly and inversely correlated with the extent of CAC in HD patients, ucMGP may become a tool for identifying HD patients with a high probability of cardiovascular calcification.

Vitamin K-dependent proteins, warfarin, and vascular calcification

            (Danziger 2008) Download

Vitamin K-dependent proteins (VKDPs) require carboxylation to become biologically active. Although the coagulant factors are the most well-known VKDPs, there are many others with important physiologic roles. Matrix Gla Protein (MGP) and Growth Arrest Specific Gene 6 (Gas-6) are two particularly important VKDPs, and their roles in vascular biology are just beginning to be understood. Both function to protect the vasculature; MGP prevents vascular calcification and Gas-6 affects vascular smooth muscle cell apoptosis and movement. Unlike the coagulant factors, which undergo hepatic carboxylation, MGP and Gas-6 are carboxylated within the vasculature. This peripheral carboxylation process is distinct from hepatic carboxylation, yet both are inhibited by warfarin administration. Warfarin prevents the activation of MGP and Gas-6, and in animals, induces vascular calcification. The relationship of warfarin to vascular calcification in humans is not fully known, yet observational data suggest an association. Given the high risk of vascular calcification in those patients with chronic kidney disease, the importance of understanding warfarin's effect on VKDPs is paramount. Furthermore, recognizing the importance of VKDPs in vascular biology will stimulate new areas of research and offer potential therapeutic interventions.

A high menaquinone intake reduces the incidence of coronary heart disease

            (Gast, de Roos et al. 2009) Download

BACKGROUND AND AIM: Vitamin K dependent proteins have been demonstrated to inhibit vascular calcification. Data on the effect of vitamin K intake on coronary heart disease (CHD) risk, however, are scarce. To examine the relationship between dietary vitamins K(1) and K(2) intake, and its subtypes, and the incidence of CHD. METHODS AND RESULTS: We used data from the Prospect-EPIC cohort consisting of 16,057 women, enrolled between 1993 and 1997 and aged 49-70 years, who were free of cardiovascular diseases at baseline. Intake of vitamin K and other nutrients was estimated with a food frequency questionnaire. Multivariate Cox proportional hazards models were used to analyse the data. After a mean+/-SD follow-up of 8.1+/-1.6 years, we identified 480 incident cases of CHD. Mean vitamin K(1) intake was 211.7+/-100.3 microg/d and vitamin K(2) intake was 29.1+/-12.8 microg/d. After adjustment for traditional risk factors and dietary factors, we observed an inverse association between vitamin K(2) and risk of CHD with a Hazard Ratio (HR) of 0.91 [95% CI 0.85-1.00] per 10 microg/d vitamin K(2) intake. This association was mainly due to vitamin K(2) subtypes MK-7, MK-8 and MK-9. Vitamin K(1) intake was not significantly related to CHD. CONCLUSIONS: A high intake of menoquinones, especially MK-7, MK-8 and MK-9, could protect against CHD. However, more research is necessary to define optimal intake levels of vitamin K intake for the prevention of CHD.

Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study

            (Geleijnse, Vermeer et al. 2004) Download

Vitamin K-dependent proteins, including matrix Gla-protein, have been shown to inhibit vascular calcification. Activation of these proteins via carboxylation depends on the availability of vitamin K. We examined whether dietary intake of phylloquinone (vitamin K-1) and menaquinone (vitamin K-2) were related to aortic calcification and coronary heart disease (CHD) in the population-based Rotterdam Study. The analysis included 4807 subjects with dietary data and no history of myocardial infarction at baseline (1990-1993) who were followed until January 1, 2000. The risk of incident CHD, all-cause mortality, and aortic atherosclerosis was studied in tertiles of energy-adjusted vitamin K intake after adjustment for age, gender, BMI, smoking, diabetes, education, and dietary factors. The relative risk (RR) of CHD mortality was reduced in the mid and upper tertiles of dietary menaquinone compared to the lower tertile [RR = 0.73 (95% CI: 0.45, 1.17) and 0.43 (0.24, 0.77), respectively]. Intake of menaquinone was also inversely related to all-cause mortality [RR = 0.91 (0.75, 1.09) and 0.74 (0.59, 0.92), respectively] and severe aortic calcification [odds ratio of 0.71 (0.50, 1.00) and 0.48 (0.32, 0.71), respectively]. Phylloquinone intake was not related to any of the outcomes. These findings suggest that an adequate intake of menaquinone could be important for CHD prevention.

Relation of circulating Matrix Gla-Protein and anticoagulation status in patients with aortic valve calcification

            (Koos, Krueger et al. 2009) Download

Matrix-Gla Protein (MGP) is a vitamin K-dependent protein acting as a local inhibitor of vascular calcification. Vitamin K-antagonists (oral anticoagulant; OAC) inhibit the activation of MGP by blocking vitamin K-metabolism. The aim of this study was to investigate the effect of long-term OAC treatment on circulating MGP levels in humans and on MGP expression in mice. Additionally, we tested the association between circulating inactive MGP (ucMGP) levels and the presence and severity of AVC in patients with aortic valve disease (AVD). We analysed circulating ucMGP levels in 191 consecutive patients with echocardiographically proven calcific AVD and 35 control subjects. The extent of AVC in the patients was assessed by multislice spiral computed tomography. Circulating ucMGP levels were significantly lower in patients with AVD (348.6 +/- 123.1 nM) compared to the control group (571.6 +/- 153.9 nM, p < 0.001). Testing the effect of coumarin in mice revealed that also the mRNA expression of MGP in the aorta was downregulated. Multifactorial analysis revealed a significant effect of glomerular filtration rate and long-term OAC therapy on circulating ucMGP levels in the patient group. Subsequently, patients on long-term OAC had significantly increased AVC scores. In conclusion, patients with calcific AVD had significantly lower levels of circulating ucMGP as compared to a reference population, free of coronary and valvular calcifications. In addition, our data suggest that OAC treatment may decrease local expression of MGP, resulting in decreased circulating MGP levels and subsequently increased aortic valve calcifications as an adverse side effect.

Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg)

            (Nimptsch, Rohrmann et al. 2008) Download

BACKGROUND: Anticarcinogenic activities of vitamin K have been observed in various cancer cell lines, including prostate cancer cells. Epidemiologic studies linking dietary intake of vitamin K with the development of prostate cancer have not yet been conducted. OBJECTIVE: We evaluated the association between dietary intake of phylloquinone (vitamin K1) and menaquinones (vitamin K2) and total and advanced prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition. DESIGN: At baseline, habitual dietary intake was assessed by means of a food-frequency questionnaire. Dietary intake of phylloquinone and menaquinones (MK-4-14) was estimated by using previously published HPLC-based food-content data. Multivariate-adjusted relative risks of total and advanced prostate cancer in relation to intakes of phylloquinone and menaquinones were calculated in 11 319 men by means of Cox proportional hazards regression. RESULTS: During a mean follow-up time of 8.6 y, 268 incident cases of prostate cancer, including 113 advanced cases, were identified. We observed a nonsignificant inverse association between total prostate cancer and total menaquinone intake [multivariate relative risk (highest compared with lowest quartile): 0.65; 95% CI: 0.39, 1.06]. The association was stronger for advanced prostate cancer (0.37; 0.16, 0.88; P for trend = 0.03). Menaquinones from dairy products had a stronger inverse association with advanced prostate cancer than did menaquinones from meat. Phylloquinone intake was unrelated to prostate cancer incidence (1.02; 0.70, 1.48). CONCLUSIONS: Our results suggest an inverse association between the intake of menaquinones, but not that of phylloquinone, and prostate cancer. Further studies of dietary vitamin K and prostate cancer are warranted.


Association of kidney function and uncarboxylated matrix Gla protein: data from the Heart and Soul Study

            (Parker, Ix et al. 2009) Download

BACKGROUND: Vascular calcification is highly prevalent in persons with chronic kidney disease (CKD) and predicts cardiovascular disease (CVD) events. Matrix Gla protein (MGP) is a potent inhibitor of vascular calcification, and lower levels of its precursor-uncarboxylated MGP (ucMGP)--are associated with vascular calcification and atherosclerosis. Whether mild to moderate decrements in kidney function are associated with lower serum ucMGP is unknown. METHODS: In a cross-sectional study among 842 outpatients with stable CVD, estimated glomerular filtration rate (eGFR), serum cystatin-C and urine albumin-to-creatinine ratio (ACR) were measured and serum ucMGP levels were determined by ELISA. Multivariate linear regression evaluated the association of each kidney function measure with serum ucMGP levels. RESULTS: The mean eGFR was 76 +/- 23 mL/min/1.73 m(2), and 186 subjects (22%) had moderate CKD (eGFR <60 mL/min/1.73 m(2)). The mean +/- SD ucMGP level was 3289 +/- 1177 nM. In unadjusted analysis, each 10 mL/ min/1.73 m(2) lower eGFR was associated with 101 nM lower ucMGP level. This association was only minimally attenuated in final multivariate models wherein each 10 mL/ min/1.73 m(2) lower eGFR was associated with 79 nM lower ucMGP (95% confidence interval [CI]; 44 to 115; P < 0.001) after adjustment for age, sex, race, body mass index, blood pressure, smoking, hypertension, diabetes; and serum albumin, calcium, phosphorus, and fetuin-A levels. Similarly, in models adjusted for identical covariates, each 0.1 mg/L higher cystatin-C was associated with 39 nM lower ucMGP (95% CI 23 to 55; P < 0.001). In contrast, no significant association was observed between ACR and ucMGP in either unadjusted or adjusted analyses (adjusted P = 0.17). All associations were similar among subjects with or without diabetes (P-values for interaction > 0.50). CONCLUSIONS: Among outpatients with stable CVD, a reduced glomerular filtration rate is associated with a decreased serum ucMGP level. In contrast, ACR is not associated with ucMGP levels. Whether ucMGP is a useful marker of vascular calcification and CVD event risk in persons with CKD deserves future study.

Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats

            (Schurgers, Spronk et al. 2007) Download

Arterial calcification (AC) is generally regarded as an independent risk factor for cardiovascular morbidity and mortality. Matrix Gla protein (MGP) is a potent inhibitor of AC, and its activity depends on vitamin K (VK). In rats, inactivation of MGP by treatment with the vitamin K antagonist warfarin leads to rapid calcification of the arteries. Here, we investigated whether preformed AC can be regressed by a VK-rich diet. Rats received a calcification-inducing diet containing both VK and warfarin (W&K). During a second 6-week period, animals were randomly assigned to receive either W&K (3.0 mg/g and 1.5 mg/g, subsequently), a diet containing a normal (5 microg/g) or high (100 microg/g) amount of VK (either K1 or K2). Increased aortic calcium concentration was observed in the group that continued to receive W&K and also in the group changed to the normal dose of VK and AC progressed. Both the VK-rich diets decreased the arterial calcium content by some 50%. In addition, arterial distensibility was restored by the VK-rich diet. Using MGP antibodies, local VK deficiency was demonstrated at sites of calcification. This is the first study in rats demonstrating that AC and the resulting decreased arterial distensibility are reversible by high-VK intake.

Matrix Gla-protein: the calcification inhibitor in need of vitamin K

            (Schurgers, Cranenburg et al. 2008) Download

Among the proteins involved in vascular calcium metabolism, the vitamin K-dependent matrix Gla-protein (MGP) plays a dominant role. Although on a molecular level its mechanism of action is not completely understood, it is generally accepted that MGP is a potent inhibitor of arterial calcification. Its pivotal importance for vascular health is demonstrated by the fact that there seems to be no effective alternative mechanism for calcification inhibition in the vasculature. An optimal vitamin K intake is therefore important to maintain the risk and rate of calcification as low as possible. With the aid of conformation-specific antibodies MGP species in both tissue and the circulation have been detected in the healthy population, and significant differences were found in patients with cardiovascular disease (CVD). Using ELISA-based assays, uncarboxylated MGP (ucMGP) was demonstrated to be a promising biomarker for cardiovascular calcification detection. These assays may have potential value for identifying patients as well as apparently healthy subjects at high risk for CVD and/or cardiovascular calcification and for monitoring the treatment of CVD and vascular calcification.

Vitamin K, circulating cytokines, and bone mineral density in older men and women

            (Shea, Dallal et al. 2008) Download

BACKGROUND: Vitamin K modulates cytokines involved in bone turnover, including interleukin-6 (IL-6) and osteoprotegerin in vitro. OBJECTIVE: The objective of this study was to assess 1) associations between measures of vitamin K status [plasma phylloquinone and serum percentage of undercarboxylated osteocalcin (%ucOC)] and IL-6, osteoprotegerin, and C-reactive protein (CRP) concentrations and 2) the effect of daily 500 mug phylloquinone supplementation for 3 y on cytokine concentrations. DESIGN: Concentrations of IL-6, osteoprotegerin, and CRP and bone mineral density (BMD) were measured at baseline and after 3 y of follow-up in 379 healthy men and women (60-81 y; 58.5% women) participating in a randomized trial that studied the effect of vitamin K supplementation on bone loss. RESULTS: Cross-sectionally, plasma phylloquinone was inversely associated with IL-6 and CRP, whereas serum %ucOC was inversely associated with IL-6. Osteoprotegerin was associated positively with plasma phylloquinone and inversely with %ucOC. No differences were observed in the 3-y change in IL-6, osteoprotegerin, and CRP concentrations between participants who received phylloquinone supplementation and those who did not. Overall, no association was observed between the 3-y changes in circulating cytokines and BMD. CONCLUSIONS: Poor vitamin K status was associated with high concentrations of cytokines involved in bone turnover, but vitamin K supplementation did not confer a decrease in cytokine concentrations. The healthy status of this cohort may explain a lack of effect of vitamin K supplementation on cytokine concentrations. This trial was registered with www.clinicaltrials.gov as NCT00183001.

Vitamin K supplementation and progression of coronary artery calcium in older men and women

            (Shea, O'Donnell et al. 2009) Download

BACKGROUND: Coronary artery calcification (CAC) is an independent predictor of cardiovascular disease. A preventive role for vitamin K in CAC progression has been proposed on the basis of the properties of matrix Gla protein (MGP) as a vitamin K-dependent calcification inhibitor. OBJECTIVE: The objective was to determine the effect of phylloquinone (vitamin K1) supplementation on CAC progression in older men and women. DESIGN: CAC was measured at baseline and after 3 y of follow-up in 388 healthy men and postmenopausal women; 200 received a multivitamin with 500 microg phylloquinone/d (treatment), and 188 received a multivitamin alone (control). RESULTS: In an intention-to-treat analysis, there was no difference in CAC progression between the phylloquinone group and the control group; the mean (+/-SEM) changes in Agatston scores were 27 +/- 6 and 37 +/- 7, respectively. In a subgroup analysis of participants who were > or =85% adherent to supplementation (n = 367), there was less CAC progression in the phylloquinone group than in the control group (P = 0.03). Of those with preexisting CAC (Agatston score > 10), those who received phylloquinone supplements had 6% less progression than did those who received the multivitamin alone (P = 0.04). Phylloquinone-associated decreases in CAC progression were independent of changes in serum MGP. MGP carboxylation status was not determined. CONCLUSIONS: Phylloquinone supplementation slows the progression of CAC in healthy older adults with preexisting CAC, independent of its effect on total MGP concentrations. Because our data are hypothesis-generating, further studies are warranted to clarify this mechanism. This trial was registered at clinicaltrials.gov as NCT00183001.


References

(2009). "Vitamin K2. Monograph." Altern Med Rev 14(3): 284-93.

Beulens, J. W., M. L. Bots, et al. (2009). "High dietary menaquinone intake is associated with reduced coronary calcification." Atherosclerosis 203(2): 489-93.

Cozzolino, M. (2009). "Matrix-Gla protein and vascular calcification: the negative role of oral anticoagulant therapy." Thromb Haemost 101(4): 605-6.

Cranenburg, E. C., V. M. Brandenburg, et al. (2009). "Uncarboxylated matrix Gla protein (ucMGP) is associated with coronary artery calcification in haemodialysis patients." Thromb Haemost 101(2): 359-66.

Cranenburg, E. C., C. Vermeer, et al. (2008). "The circulating inactive form of matrix Gla Protein (ucMGP) as a biomarker for cardiovascular calcification." J Vasc Res 45(5): 427-36.

Danziger, J. (2008). "Vitamin K-dependent proteins, warfarin, and vascular calcification." Clin J Am Soc Nephrol 3(5): 1504-10.

Gast, G. C., N. M. de Roos, et al. (2009). "A high menaquinone intake reduces the incidence of coronary heart disease." Nutr Metab Cardiovasc Dis 19(7): 504-10.

Geleijnse, J. M., C. Vermeer, et al. (2004). "Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study." J Nutr 134(11): 3100-5.

Koos, R., T. Krueger, et al. (2009). "Relation of circulating Matrix Gla-Protein and anticoagulation status in patients with aortic valve calcification." Thromb Haemost 101(4): 706-13.

Nimptsch, K., S. Rohrmann, et al. (2008). "Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg)." Am J Clin Nutr 87(4): 985-92.

Parker, B. D., J. H. Ix, et al. (2009). "Association of kidney function and uncarboxylated matrix Gla protein: data from the Heart and Soul Study." Nephrol Dial Transplant 24(7): 2095-101.

Schurgers, L. J., E. C. Cranenburg, et al. (2008). "Matrix Gla-protein: the calcification inhibitor in need of vitamin K." Thromb Haemost 100(4): 593-603.

Schurgers, L. J., H. M. Spronk, et al. (2007). "Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats." Blood 109(7): 2823-31.

Shea, M. K., G. E. Dallal, et al. (2008). "Vitamin K, circulating cytokines, and bone mineral density in older men and women." Am J Clin Nutr 88(2): 356-63.

Shea, M. K., C. J. O'Donnell, et al. (2009). "Vitamin K supplementation and progression of coronary artery calcium in older men and women." Am J Clin Nutr 89(6): 1799-807.