Vitamin B3 Abstracts 3

© 2010

The relationship of visfatin/pre-B-cell colony-enhancing factor/nicotinamide phosphoribosyltransferase in adipose tissue with inflammation, insulin resistance, and plasma lipids

            (Chang, Chang et al. 2009) Download

Visfatin/pre-B-cell colony-enhancing factor (PBEF)/nicotinamide phosphoribosyltransferase (Nampt) has been proposed as an insulin-mimicking adipocytokine predominantly secreted from visceral adipose tissue (VAT) and correlated with obesity. However, recent evidence challenged this proposal and instead suggested visfatin/PBEF/Nampt as a proinflammatory cytokine. The study aimed to examine whether visfatin/PBEF/Nampt was predominantly expressed in VAT and was correlated with obesity. The relationship of visfatin/PBEF/Nampt gene expression in adipose tissues with proinflammatory gene expression and metabolic phenotypes was also examined. The relative messenger RNA (mRNA) levels of visfatin/PBEF/Nampt, macrophage-specific marker CD68, and proinflammatory genes were measured in paired abdominal VAT and subcutaneous adipose tissues (SAT) and from 53 nondiabetic adults using quantitative real-time polymerase chain reaction. Fasting glucose, insulin, triglyceride, cholesterol, and uric acid levels were measured; and systemic insulin sensitivity was quantified with modified insulin suppression tests. There was no difference in visfatin/PBEF/Nampt mRNA levels between VAT and SAT, and neither was associated with measures of obesity. Visfatin/PBEF/Nampt mRNA levels were strongly correlated with proinflammatory gene expression including CD68 and tumor necrosis factor-alpha gene in both VAT and SAT. The VAT and SAT visfatin/PBEF/Nampt mRNA expressions were positively correlated with steady-state plasma glucose concentrations measured with modified insulin suppression tests, a direct measurement of systemic insulin resistance (r = 0.42, P = .03 and r = 0.44, P = .03, respectively). The VAT visfatin/PBEF/Nampt mRNA expression was also positively correlated with fasting triglyceride (r = 0.42, P = .002) and total cholesterol levels (r = 0.37, P = .009). Visfatin/PBEF/Nampt is not predominantly secreted from VAT and is not correlated with obesity. Our findings suggest that visfatin/PBEF/Nampt is a proinflammatory marker of adipose tissue associated with systemic insulin resistance and hyperlipidemia.

Generation of insulin-producing islet-like clusters from human embryonic stem cells

            (Jiang, Au et al. 2007) Download

Recent success in pancreatic islet transplantation has energized the field to discover an alternative source of stem cells with differentiation potential to beta cells. Generation of glucose-responsive, insulin-producing beta cells from self-renewing, pluripotent human ESCs (hESCs) has immense potential for diabetes treatment. We report here the development of a novel serum-free protocol to generate insulin-producing islet-like clusters (ILCs) from hESCs grown under feeder-free conditions. In this 36-day protocol, hESCs were treated with sodium butyrate and activin A to generate definitive endoderm coexpressing CXCR4 and Sox17, and CXCR4 and Foxa2. The endoderm population was then converted into cellular aggregates and further differentiated to Pdx1-expressing pancreatic endoderm in the presence of epidermal growth factor, basic fibroblast growth factor, and noggin. Soon thereafter, expression of Ptf1a and Ngn3 was detected, indicative of further pancreatic differentiation. The aggregates were finally matured in the presence of insulin-like growth factor II and nicotinamide. The temporal pattern of pancreas-specific gene expression in the hESC-derived ILCs showed considerable similarity to in vivo pancreas development, and the final population contained representatives of the ductal, exocrine, and endocrine pancreas. The hESC-derived ILCs contained 2%-8% human C-peptide-positive cells, as well as glucagon- and somatostatin-positive cells. Insulin content as high as 70 ng of insulin/mug of DNA was measured in the ILCs, representing levels higher than that of human fetal islets. In addition, the hESC-derived ILCs contained numerous secretory granules, as determined by electron microscopy, and secreted human C-peptide in a glucose-dependent manner. Disclosure of potential conflicts of interest is found at the end of this article.

Differentiation of human embryonic stem cells into insulin-producing clusters

            (Segev, Fishman et al. 2004) Download

Type I diabetes mellitus is caused by an autoimmune destruction of the insulin-producing beta cells. The major obstacle in using transplantation for curing the disease is the limited source of insulin-producing cells. The isolation of human embryonic stem (hES) cells introduced a new prospect for obtaining a sufficient number of beta cells for transplantation. We present here a method for forming immature islet-like clusters of insulin-producing cells derived from hES cells. The protocol consisted of several steps. Embryoid bodies were first cultured and plated in insulin-transferrin-selenium-fibronectin medium, followed by medium supplemented with N2, B27, and basic fibroblast growth factor (bFGF). Next, the glucose concentration in the medium was lowered, bFGF was withdrawn, and nicotinamide was added. Dissociating the cells and growing them in suspension resulted in the formation of clusters which exhibited higher insulin secretion and had longer durability than cells grown as monolayers. Reverse transcription-polymerase chain reaction detected an enhanced expression of pancreatic genes in the differentiated cells. Immunofluorescence and in situ hybridization analyses revealed a high percentage of insulin-expressing cells in the clusters. In addition to insulin, most cells also coexpressed glucagon or somatostatin, indicating a similarity to immature pancreatic cells. Further improvement of this insulin-producing cell protocol may lead to the formation of an unlimited source of cells suitable for transplantation.

Nampt: linking NAD biology, metabolism and cancer

            (Garten, Petzold et al. 2009) Download

Nicotinamide phosphoribosyltransferase (Nampt) converts nicotinamide to nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD) intermediate. Previously identified as a cytokine pre-B-cell colony-enhancing factor and controversially claimed as an insulin-mimetic hormone visfatin, Nampt has recently drawn much attention in several fields, including NAD biology, metabolism and inflammation. As a NAD biosynthetic enzyme, Nampt regulates the activity of NAD-consuming enzymes such as sirtuins and influences a variety of metabolic and stress responses. Nampt also plays an important part in regulating insulin secretion in pancreatic beta-cells. Nampt seems to have another function as an immunomodulatory cytokine and, therefore, has a role in inflammation. This review summarizes these various functional aspects of Nampt and discusses its potential roles in diseases, including type 2 diabetes and cancer.

Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases

            (Imai 2009) Download

New interest in NAD biology has recently been revived, and enzymes involved in NAD biosynthetic pathways have been identified and characterized in mammals. Among them, nicotinamide phosphoribosyltransferase (Nampt) has drawn much attention in several different fields, including NAD biology, metabolism, and immunomodulatory response. The research history of this protein is peculiar and controversial, and its physiological function has been a matter of debate. Nampt has both intra- and extracellular forms in mammals. Intracellular Nampt (iNampt) is an essential enzyme in the NAD biosynthetic pathway starting from nicotinamide. On the other hand, an extracellular form of this protein has been reported to act as a cytokine named PBEF, an insulin-mimetic hormone named visfatin, or an extracellular NAD biosynthetic enzyme named eNampt. This review article summarizes the research history and reported functions of this unique protein and discusses the pathophysiological significance of Nampt as an NAD biosynthetic enzyme vs. a potential inflammatory cytokine in diverse biological contexts.

Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme

            (Revollo, Korner et al. 2007) Download

Intracellular nicotinamide phosphoribosyltransferase (iNampt) is an essential enzyme in the NAD biosynthetic pathway. An extracellular form of this protein (eNampt) has been reported to act as a cytokine named PBEF or an insulin-mimetic hormone named visfatin, but its physiological relevance remains controversial. Here we show that eNampt does not exert insulin-mimetic effects in vitro or in vivo but rather exhibits robust NAD biosynthetic activity. Haplodeficiency and chemical inhibition of Nampt cause defects in NAD biosynthesis and glucose-stimulated insulin secretion in pancreatic islets in vivo and in vitro. These defects are corrected by administration of nicotinamide mononucleotide (NMN), a product of the Nampt reaction. A high concentration of NMN is present in mouse plasma, and plasma eNampt and NMN levels are reduced in Nampt heterozygous females. Our results demonstrate that Nampt-mediated systemic NAD biosynthesis is critical for beta cell function, suggesting a vital framework for the regulation of glucose homeostasis.

Visfatin, glucose metabolism and vascular disease: a review of evidence

            (Saddi-Rosa, Oliveira et al. 2010) Download

The adipose tissue is an endocrine organ producing substances called adipocytokines that have different effects on lipid metabolism, metabolic syndrome, and cardiovascular risk. Visfatin was recently described as an adipocytokine with potentially important effects on glucose metabolism and atherosclerosis. Visfatin has been linked to several inflammatory conditions, beta cell function, and cardiovascular disease. The growing number of publications on the subject shall bring further evidence about this adipocytokine. Its findings may contribute in the identification of higher risk individuals for diabetes and cardiovascular disease with a better comprehension about the complex intercorrelation between adiposity, glucose metabolism and vascular disease.

Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells

            (Hara, Yamada et al. 2007) Download

NAD plays critical roles in various biological processes through the function of SIRT1. Although classical studies in mammals showed that nicotinic acid (NA) is a better precursor than nicotinamide (Nam) in elevating tissue NAD levels, molecular details of NAD synthesis from NA remain largely unknown. We here identified NA phosphoribosyltransferase (NAPRT) in humans and provided direct evidence of tight link between NAPRT and the increase in cellular NAD levels. The enzyme was abundantly expressed in the small intestine, liver, and kidney in mice and mediated [(14)C]NAD synthesis from [(14)C]NA in human cells. In cells expressing endogenous NAPRT, the addition of NA but not Nam almost doubled cellular NAD contents and decreased cytotoxicity by H(2)O(2). Both effects were reversed by knockdown of NAPRT expression. These results indicate that NAPRT is essential for NA to increase cellular NAD levels and, thus, to prevent oxidative stress of the cells. Kinetic analyses revealed that NAPRT, but not Nam phosphoribosyltransferase (NamPRT, also known as pre-B-cell colony-enhancing factor or visfatin), is insensitive to the physiological concentration of NAD. Together, we conclude that NA elevates cellular NAD levels through NAPRT function and, thus, protects the cells against stress, partly due to lack of feedback inhibition of NAPRT but not NamPRT by NAD. The ability of NA to increase cellular NAD contents may account for some of the clinically observed effects of the vitamin and further implies a novel application of the vitamin to treat diseases such as those associated with the depletion of cellular NAD pools.

Nicotinamide-rich diet protects the heart against ischaemia-reperfusion in mice: a crucial role for cardiac SUR2A

            (Sukhodub, Du et al. 2010) Download

It is a consensus view that a strategy to increase heart resistance to ischaemia-reperfusion is a warranted. Here, based on our previous study, we have hypothesized that a nicotinamide-rich diet could increase myocardial resistance to ischaemia-reperfusion. Therefore, the purpose of this study was to determine whether nicotinamide-rich diet would increase heart resistance to ischaemia-reperfusion and what is the underlying mechanism. Experiments have been done on mice on control and nicotinamide-rich diet (mice were a week on nicotinamide-rich diet) as well as on transgenic mice overexpressing SUR2A (SUR2A mice), a regulatory subunit of cardioprotective ATP-sensitive K(+) (K(ATP)) channels and their littermate controls (WT). The levels of mRNA in heart tissue were measured by real-time RT-PCR, whole heart and single cell resistance to ischaemia-reperfusion and severe hypoxia was measured by TTC staining and laser confocal microscopy, respectively. Nicotinamide-rich diet significantly decreased the size of myocardial infarction induced by ischaemia-reperfusion (from 42.5+/-4.6% of the area at risk zone in mice on control diet to 26.8+/-1.8% in mice on nicotinamide-rich diet, n=6-12, P=0.031). The cardioprotective effect of nicotinamide-rich diet was associated with 11.46+/-1.22 times (n=6) increased mRNA levels of SUR2A in the heart. HMR1098, a selective inhibitor of the sarcolemmal K(ATP) channels opening, abolished cardioprotection afforded by nicotinamide-rich diet. Transgenic mice with a sole increase in SUR2A expression had also increased cardiac resistance to ischaemia-reperfusion. We conclude that nicotinamide-rich diet up-regulate SUR2A and increases heart resistance to ischaemia-reperfusion.

Nicotinamide induces both proliferation and differentiation of embryonic stem cells into insulin-producing cells

            (Vaca, Berna et al. 2003) Download

In contrast to the consistent observation that methods that promote proliferation also dedifferentiate insulin-producing cells, useful in vitro differentiation protocols must drive both proliferation and differentiation. We herein describe an strategy in which the combination of nutrient restriction and nicotinamide supplementation results in a consistent increase in the mass of insulin-producing cells.


Garten, A., S. Petzold, et al. (2009). "Nampt: linking NAD biology, metabolism and cancer." Trends Endocrinol Metab 20(3): 130-8.

Hara, N., K. Yamada, et al. (2007). "Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells." J Biol Chem 282(34): 24574-82.

Imai, S. (2009). "Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases." Curr Pharm Des 15(1): 20-8.

Jiang, J., M. Au, et al. (2007). "Generation of insulin-producing islet-like clusters from human embryonic stem cells." Stem Cells 25(8): 1940-53.

Revollo, J. R., A. Korner, et al. (2007). "Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme." Cell Metab 6(5): 363-75.

Saddi-Rosa, P., C. S. Oliveira, et al. (2010). "Visfatin, glucose metabolism and vascular disease: a review of evidence." Diabetol Metab Syndr 2: 21.

Segev, H., B. Fishman, et al. (2004). "Differentiation of human embryonic stem cells into insulin-producing clusters." Stem Cells 22(3): 265-74.

Sukhodub, A., Q. Du, et al. (2010). "Nicotinamide-rich diet protects the heart against ischaemia-reperfusion in mice: a crucial role for cardiac SUR2A." Pharmacol Res 61(6): 564-70.

Vaca, P., G. Berna, et al. (2003). "Nicotinamide induces both proliferation and differentiation of embryonic stem cells into insulin-producing cells." Transplant Proc 35(5): 2021-3.