UVBI Abstracts 4



Blocked Oxidation
(Olney, 1967) Download
This presentation deals with the prevention and treatment of "blocked oxidation" which we consider the prime cause of malignant, viral, bacterial, and allergic diseases. With our present knowledge it should be possible to prevent and wipe out cancer and serious infectious diseases. We are in an era of destructive therapy, powerful poisonous insecticides, fluoride poisoning and "embalmed foods." This is an era of ignoring the principles of healthful living and then attempting to cure everything by taking an array of pills. We believe that the so-called "accepted" methods of treating cancer are no more successful today than they were 40 years ago. We are entering on an era of prevention and simple effective treatment of malignant, viral, bacterial, and allergic diseases.

Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy.
            (Adkins et al., 2014) Download
The concept of immunogenic cancer cell death (ICD), as originally observed during the treatment with several chemotherapeutics or ionizing irradiation, has revolutionized the view on the development of new anticancer therapies. ICD is defined by endoplasmic reticulum (ER) stress response, reactive oxygen species (ROS) generation, emission of danger-associated molecular patterns and induction of antitumor immunity. Here we describe known and emerging cancer cell death-inducing physical modalities, such as ionizing irradiation, ultraviolet C light, Photodynamic Therapy (PDT) with Hypericin, high hydrostatic pressure (HHP) and hyperthermia (HT), which have been shown to elicit effective antitumor immunity. We discuss the evidence of ICD induced by these modalities in cancer patients together with their applicability in immunotherapeutic protocols and anticancer vaccine development.


Spectral dependence of UV-induced immediate and delayed apoptosis: the role of membrane and DNA damage.
            (Godar and Lucas, 1995) Download
The phototoxicity of each waveband region of UV radiation (UVR), i.e., UVA (320-400 nm), UVB (290-320 nm) and UVC (200-290 nm), was correlated with an apoptotic mechanism using equilethal doses (10% survival) on murine lymphoma L5178Y-R cells. Apoptosis was qualitatively monitored for DNA "ladder" formation (multiples of 200 base pair units) using agarose gel electrophoresis, while the percentages of apoptotic and membrane-permeabilized cells were quantified over a postexposure time course using flow cytometry. The UVA1 radiation (340-400 nm) induced both an immediate (< 4 h) and a delayed (> 20 h) apoptotic mechanism, while UVB or UVC radiation induced only the delayed mechanism. The role of membrane damage was examined using a lipophilic free-radical scavenger, vitamin E. Immediate apoptosis and membrane permeability increased in a UVA1 dose-dependent manner, both of which were reduced by vitamin E. However, vitamin E had little effect on UVR-induced delayed apoptosis. In contrast, the DNA damaging agents 2,4- and 2,6-diaminotoluene exclusively induced delayed apoptosis. Thus, immediate apoptosis can be initiated by UVA1-induced membrane damage, while delayed apoptosis can be initiated by DNA damage. Moreover, the results suggest that immediate and delayed apoptosis are two independent mechanisms that exist beyond the realm of photobiology.

The pathogenic role of interleukin-22 and its receptor during UVB-induced skin inflammation.
            (Kim et al., 2017) Download
Recent studies show that IL-22, a cytokine produced by activated CD4+ T cells and NK cells, plays a pathogenic role in acute and chronic skin diseases. While IL-22 is produced by immune cells, the expression of IL-22Rα, the functional subunit of IL-22R, is mostly restricted to non-hematopoietic cells in organs such as the skin and pancreas. Although it is well known that ultraviolet B (UVB) radiation induces skin inflammation, there have been no reports regarding the effect of UVB on the expression of IL-22Rα. This study investigated IL-22Rα expression and IL-22-mediated proliferation and pro-inflammatory cytokine production by UVB-irradiated keratinocytes. IL-22Rα was increased in HaCaT and primary human keratinocytes after UVB irradiation through the translocation of IL-22Rα from the cytosol to the membrane. This increase in the expression of IL-22Rα was mediated by the PI3K/Akt pathway. Moreover, the suppression of keratinocyte proliferation by UVB irradiation was inhibited by treatment with IL-22. At the same time, IL-22 increased the production of IL-1α, IL-6, and IL-18 in UVB-irradiated HaCaT cells and primary human keratinocytes. Finally, IL-22Rα expression was increased in UVB-irradiated human and mouse skin by immunohistochemistry. The increased expression of IL-22Rα therefore promotes keratinocyte proliferation and pro-inflammatory cytokine production during UVB-induced skin inflammation, suggesting that UVB facilitates skin inflammation by increasing the responsiveness of keratinocytes to IL-22. This study provides a new insight into UVB-induced skin inflammation and the regulation of related inflammatory skin diseases.

Mechanisms of ultraviolet (UV) B and UVA phototherapy.
            (Krutmann and Morita, 1999) Download
Ultraviolet (UV) radiation has been used for decades with great success and at a constantly increasing rate in the management of skin diseases, becoming an essential part of modern dermatologic therapy (Krutmann et al, 1999). For phototherapy, irradiation devices emitting either predominantly middlewave UV (UVB, 290-315 nm) or longwave UV (UVA, 315-400 nm) radiation are employed. In former years, patients were treated with broad-band UVB, broad-band UVA, or combination regimens. Broad-band UV phototherapy, however, is being replaced more frequently by the use of irradiation devices that allow treatment of patients' skin with selected emission spectra. Two such modalities which have their origin in European Photodermatology are 311 nm UVB phototherapy (which uses long-wave UVB radiation above 300 nm rather than broadband UVB) and high-dose UVA1 therapy (which selective employs long-wave UVA radiation above 340 nm). In Europe, 311 nm UVB phototherapy has almost replaced classical broad-band UVB phototherapy and has significantly improved therapeutic efficacy and safety of UVB phototherapy (van Welden et al, 1988; Krutmann et al, 1999). The constantly increasing use of UVA-1 phototherapy has not only improved UVA phototherapy for established indications such as atopic dermatitis (Krutmann et al, 1992a, 1998; Krutmann, 1996), but has also provided dermatologists with the opportunity to successfully treat previously untractable skin diseases, e.g., connective tissue diseases (Stege et al, 1997; Krutmann, 1997). These clinical developments have stimulated studies about the mechanisms by which UVB and UVA phototherapy work. The knowledge obtained from this work is an indispensable prerequisite to make treatment decisions on a rationale rather than an empirical basis. Modern dermatologic phototherapy has started to profit from this knowledge, and it is very likely that this development will continue and provide dermatologists with improved phototherapeutic modalities and regimens for established and new indications. This review aims to provide an overview about current concepts of the mode of action of dermatologic phototherapy. Special emphasis will be given on studies that have identified previously unrecognized immunosuppressive/anti-inflammatory principles of UV phototherapy.


UV Differentially Induces Oxidative Stress, DNA Damage and Apoptosis in BCR-ABL1-Positive Cells Sensitive and Resistant to Imatinib.
            (Synowiec et al., 2015) Download
Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2 · s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis.

Effects of riboflavin and ultraviolet light treatment on platelet thrombus formation and thrombus stability on collagen.
            (Terada et al., 2017) Download
BACKGROUND:  Pathogen reduction technologies (PRTs) are considered for the implementation of safer platelet (PLT) transfusion. PRT treatment involves the addition of a photosensitizer to a blood component followed by ultraviolet (UV) light irradiation. However, the effects of PRT treatment on PLT thrombus formation and thrombus stability have not been satisfactorily clarified. STUDY DESIGN AND METHODS:  Leukoreduced PLT concentrates (PCs) were treated with riboflavin and UV light (Mirasol PRT). PLT thrombus formation on collagen was evaluated by the microchannel method, by which the total amount of PLTs deposited was measured as indices of thrombus formation and thrombus stability. Using a cone-plate shear-induced PLT aggregometer, PLT reactivity in blood flow was examined in a wide range of shear stresses of 6 to 108 dyn/cm(2) . RESULTS:  There was no significant difference in surface coverage between PRT-treated PLTs and control PLTs on collagen. On the other hand, the total amount of PRT-treated PLTs deposited was higher than that of control PLTs. The promotive effect of PRT treatment on PLT deposition completely disappeared in the presence of tirofiban, a potent integrin αIIbβ3 inhibitor. The percentage of the dissociation of PRT-treated PLTs on collagen was lower than that of control PLTs after flushing with phosphate-buffered saline. PRT treatment significantly inhibited PLT aggregation under high-shear-stress conditions. CONCLUSION:  Riboflavin-based PRT treatment of PCs leads to the enhancement of PLT thrombus formation and thrombus stability on collagen. However, it does not enhance the reactivity of PLTs not in contact with collagen under high-shear-stress conditions.

Differential regulation of P53 and Bcl-2 expression by ultraviolet A and B.
            (Wang et al., 1998) Download
The induction of apoptosis by ultraviolet (UV) radiation and other DNA damaging agents plays a critical role in monitoring the accumulation of genetic damage and the suppression of tumor development. We hypothesize that UVA and UVB induce apoptosis by modulating balances between p53 and/or bcl-2 genes. Using MCF-7 cells that express both wild-type P53 and Bcl-2 proteins, we demonstrated that UVA and UVB induced apoptosis through regulating expression of apoptosis promoting or inhibiting genes. UVA induced immediate apoptosis and downregulated bcl-2 expression. Bcl-2 expression was reduced by approximately 40% at 4 h post-150 kJ UVA irradiation per m2 with a maximum downregulation (over 70%) at 24 h. The dose-response studies revealed that significant reduction of bcl-2 expression was observed at UVA doses ranging from 50 to 200 kJ per m2; however, p53 levels were not affected by UVA. In contrast, UVB exhibited a entirely different action than UVA in that UVB substantially induced p53 expression, but had no effect on bcl-2 expression. The induction of P53 by UVB was dose and time dependent with the maximum expression at 24 h post-2 and post-4 kJ UVB irradiation per m2. Down-regulation of bcl-2 and fragmentation of DNA induced by UVA occurred earlier (approximately at 4 h) than upregulation of p53 and DNA fragmentation by UVB (12-24 h). These results suggest that UVA and UVB cause cell damage through different mechanisms and that the balances between the expression of p53 and bcl-2 may play an important role in regulating the apoptosis induced by UV irradiation.


Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species.
            (Widel et al., 2014) Download
Radiation-induced bystander effects are various types of responses displayed by nonirradiated cells induced by signals transmitted from neighboring irradiated cells. This phenomenon has been well studied after ionizing radiation, but data on bystander effects after UV radiation are limited and so far have been reported mainly after UVA and UVB radiation. The studies described here were aimed at comparing the responses of human dermal fibroblasts exposed directly to UV (A, B, or C wavelength range) and searching for bystander effects induced in unexposed cells using a transwell co-incubation system. Cell survival and apoptosis were used as a measure of radiation effects. Additionally, induction of senescence in UV-exposed and bystander cells was evaluated. Reactive oxygen species (ROS), superoxide radical anions, and nitric oxide inside the cells and secretion of interleukins 6 and 8 (IL-6 and IL-8) into the medium were assayed and evaluated as potential mediators of bystander effects. All three regions of ultraviolet radiation induced bystander effects in unexposed cells, as shown by a diminution of survival and an increase in apoptosis, but the pattern of response to direct exposure and the bystander effects differed depending on the UV spectrum. Although UVA and UVB were more effective than UVC in generation of apoptosis in bystander cells, UVC induced senescence both in irradiated cells and in neighbors. The level of cellular ROS increased significantly shortly after UVA and UVB exposure, suggesting that the bystander effects may be mediated by ROS generated in cells by UV radiation. Interestingly, UVC was more effective at generation of ROS in bystanders than in directly exposed cells and induced a high yield of superoxide in exposed and bystander cells, which, however, was only weakly associated with impairment of mitochondrial membrane potential. Increasing concentration of IL-6 but not IL-8 after exposure to each of the three bands of UV points to its role as a mediator in the bystander effect. Nitric oxide appeared to play a minor role as a mediator of bystander effects in our experiments. The results demonstrating an increase in intracellular oxidation, not only in directly UV-exposed but also in neighboring cells, and generation of proinflammatory cytokines, processes entailing cell damage (decreased viability, apoptosis, senescence), suggest that all bands of UV radiation carry a potential hazard for human health, not only due to direct mechanisms, but also due to bystander effects.



Adkins, I, et al. (2014), ‘Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy.’, Oncoimmunology, 3 (12), e968434. PubMed: 25964865
Godar, DE and AD Lucas (1995), ‘Spectral dependence of UV-induced immediate and delayed apoptosis: the role of membrane and DNA damage.’, Photochem Photobiol, 62 (1), 108-13. PubMed: 7638254
Kim, Y, et al. (2017), ‘The pathogenic role of interleukin-22 and its receptor during UVB-induced skin inflammation.’, PLoS One, 12 (5), e0178567. PubMed: 28558005
Krutmann, J and A Morita (1999), ‘Mechanisms of ultraviolet (UV) B and UVA phototherapy.’, J Investig Dermatol Symp Proc, 4 (1), 70-72. PubMed: 10537012
Olney, RC (1967), ‘Blocked Oxidation’, PubMed:
Synowiec, E, et al. (2015), ‘UV Differentially Induces Oxidative Stress, DNA Damage and Apoptosis in BCR-ABL1-Positive Cells Sensitive and Resistant to Imatinib.’, Int J Mol Sci, 16 (8), 18111-28. PubMed: 26251899
Terada, C, et al. (2017), ‘Effects of riboflavin and ultraviolet light treatment on platelet thrombus formation and thrombus stability on collagen.’, Transfusion, 57 (7), 1772-80. PubMed: 28417457
Wang, Y, et al. (1998), ‘Differential regulation of P53 and Bcl-2 expression by ultraviolet A and B.’, J Invest Dermatol, 111 (3), 380-84. PubMed: 9740227
Widel, M, et al. (2014), ‘Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species.’, Free Radic Biol Med, 68 278-87. PubMed: 24373962