Tributyrin Abstracts 1

©

Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors.
            (Conley et al., 1998) Download
Butyrates have been studied as cancer differentiation agents in vitro and as a treatment for hemoglobinopathies. Tributyrin, a triglyceride with butyrate molecules esterified at the 1, 2, and 3 positions, induces differentiation and/or growth inhibition of a number of cell lines in vitro. When given p.o. to rodents, tributyrin produces substantial plasma butyrate concentrations. We treated 13 patients with escalating doses of tributyrin from 50 to 400 mg/kg/day. Doses were administered p.o. after an overnight fast, once daily for 3 weeks, followed by a 1-week rest. Intrapatient dose escalation occurred after two courses without toxicity greater than grade 2. The time course of butyrate in plasma was assessed on days 1 and 15 and after any dose escalation. Grade 3 toxicities consisted of nausea, vomiting, and myalgia. Grades 1 and 2 toxicities included diarrhea, headache, abdominal cramping, nausea, anemia, constipation, azotemia, lightheadedness, fatigue, rash, alopecia, odor, dysphoria, and clumsiness. There was no consistent increase in hemoglobin F with tributyrin treatment. Peak plasma butyrate concentrations occurred between 0.25 and 3 h after dose, increased with dose, and ranged from 0 to 0.45 mM. Peak concentrations did not increase in three patients who had dose escalation. Butyrate pharmacokinetics were not different on days 1 and 15. Because peak plasma concentrations near those effective in vitro (0.5-1 mM) were achieved, but butyrate disappeared from plasma by 5 h after dose, we are now pursuing dose escalation with dosing three times daily, beginning at a dose of 450 mg/kg/day.

Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug.
            (Edelman et al., 2003) Download
PURPOSE:  Butyrate is a small polar compound able to produce terminal differentiation and apoptosis in a variety of in vitro models at levels above 50-100 microM. Previously our group demonstrated that daily oral administration of the prodrug, tributyrin, is able to briefly achieve levels >100 microM. Given in vitro data that differentiating activity requires continuous butyrate exposure, the short t1/2 of the drug and a desire to mimic the effects of an intravenous infusion, we evaluated a three times daily schedule. PATIENTS AND METHODS:  Enrolled in this study were 20 patients with advanced solid tumors for whom no other therapy was available, had life expectancy greater than 12 weeks, and normal organ function. They were treated with tributyrin at doses from 150 to 200 mg/kg three times daily. Blood was sampled for pharmacokinetic analysis prior to dosing and at 15 and 30 min and 1, 1.5, 2, 2.5, 3, 3.5 and 4 h thereafter. RESULTS:  The patients entered comprised 15 men and 5 women with a median age of 61 years (range 30-74 years). Prior therapy regimens included: chemotherapy (median two prior regimens, range none to five), radiation therapy (one), no prior therapy (one). There was no dose-limiting toxicity. Escalation was halted at the 200 mg/kg three times daily level due to the number of capsules required. A median butyrate concentration of 52 microM was obtained but there was considerable interpatient variability. No objective responses were seen. There were four patients with prolonged disease stabilization ranging from 3 to 23 months; median progression-free survival was 55 days. Two patients with chemotherapy-refractory non-small-cell lung cancer had survived for >1 year at the time of this report without evidence of progression. CONCLUSION:  Tributyrin is well tolerated and levels associated with in vitro activity are achieved with three times daily dosing.

Anticarcinogenic actions of tributyrin, a butyric acid prodrug.
            (Heidor et al., 2012) Download
Bioactive food compounds (BFCs) exhibit potential anticarcinogenic effects that deserve to be explored. Butyric acid (BA) is considered a promising BFC and has been used in clinical trials; however, its short half-life considerably restricts its therapeutic application. Tributyrin (TB), a BA prodrug present in milk fat and honey, has more favorable pharmacokinetic properties than BA, and its oral administration is also better tolerated. In vitro and in vivo studies have shown that TB acts on multiple anticancer cellular and molecular targets without affecting non-cancerous cells. Among the TB mechanisms of action, the induction of apoptosis and cell differentiation and the modulation of epigenetic mechanisms are notable. Due to its anticarcinogenic potential, strategies as lipid emulsions, nanoparticles, or structured lipids containing TB are currently being developed to improve its organoleptic characteristics and bioavailability. In addition, TB has minimal toxicity, making it an excellent candidate for combination therapy with other agents for the control of cancer. Despite the lack of data available in the literature, TB is a promising molecule for anticancer strategies. Therefore, additional preclinical and clinical studies should be performed using TB to elucidate its molecular targets and anticarcinogenic potential.


 

Preparation and evaluation of tributyrin emulsion as a potent anti-cancer agent against melanoma.
            (Kang et al., 2011) Download
Histone deacetylase inhibitors such as butyrate are known to exhibit anti-cancer activities in a wide range of cancer including melanoma. In spite of these potencies, butyrate is not practically used for cancer treatment due to its rapid metabolism and very short plasma half-life. Tributyrin, a triglyceride analog of butyrate, can act as a pro-drug of butyrate after being cleaved by intracellular enzymes. The present study sought to investigate a possibility to develop tributyrin emulsion as a potent anti-cancer agent against melanoma. Mixture of Tween80 and 1, 2-dimyristoyl-sn-glycero-3-phosphocholine as a surfactant to disperse tributyrin produced homogeneous emulsions with nanometer sizes, even without a harsh homogenization procedure. Tributyrin emulsion was more potent than butyrate in inhibiting the growth of B16-F10 melanoma cells. Accumulation of cells at sub G(0)/G(1) phase and the DNA fragmentation induced by tributyrin emulsion treatment revealed that tributyrin emulsion inhibited the growth of B16-F10 cells by inducing apoptosis. Treatment with tributyrin emulsion suppressed the colony formation of melanoma cells in a dose-dependent manner. Furthermore, after intraperitoneal administration into mice, tributyrin emulsion inhibited the formation of tumor colonies in the lung following intravenous injection of melanoma cells. Taken together, our data suggests that tributyrin emulsion may be developed as a potent anti-cancer agent against melanoma.

Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer.
            (Kuefer et al., 2004) Download
Histone deacetylase inhibitors (HDACs) are known to exhibit antiproliferative effects on various carcinoma cells. In this study, the in vivo efficiency of two HDACs, sodium butyrate and tributyrin, on prostate cancer growth inhibition were investigated. To gain an insight into the possible underlying pathways, cell culture experiments were performed focusing on the expression of p21, Rb and c-myc. For in vivo testing, prostate cancer cell lines (PC3 and TSU-Pr1) were seeded on the chorioallantois membrane (CAM) and implanted in a xenograft model using nude mice. Standard Western blot analysis was performed for protein expression of p21, Rb and c-myc in HDAC-treated vs untreated prostate cancer cells. Both sodium butyrate and tributyrin had a considerable treatment effect on microtumours on the chicken egg at already very low concentrations of 0.1 mM. Tributyrin-treated tumours showed the strongest effect with 38% apoptotic nuclei in the prostate cancer cell line PC3. In the mouse model, there was almost no difference between sodium butyrate and tributyrin. In untreated animals the tumours were almost double the size 4 weeks after implantation. Tumours of the treatment groups had a significantly lower percentage of Ki-67-positive-stained nuclei. As demonstrated by Western blot analysis, these effects seem to be independent of p53 status and a pathway via p21-Rb-c-myc is possibly involved. In this study we have demonstrated a substantial in vivo treatment effect, which can be induced by the application of sodium butyrate or the orally applicable tributyrin in human prostate cancer. The given results may provide the rationale to apply these drugs in well-controlled clinical trials in patients being at high risk of recurrence after specific therapy or in patients with locally or distant advanced prostate cancer.

 

Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein.
            (Ortega et al., 2016) Download
Hepatocellular carcinoma (HCC), an aggressive and the fastest growing life-threatening cancer worldwide, is often diagnosed at intermediate or advanced stages of the disease, which substantially limits therapeutic approaches for its successful treatment. This indicates that the prevention of hepatocarcinogenesis is probably the most promising approach to reduce both the HCC incidence and cancer-related mortality. In previous studies, we demonstrated a potent chemopreventive effect of tributyrin, a butyric acid prodrug, on experimental hepatocarcinogenesis. The cancer-inhibitory effect of tributyrin was linked to the suppression of sustained cell proliferation and induction of apoptotic cell death driven by an activation of the p53 apoptotic signaling pathway. The goal of the present study was to investigate the underlying molecular mechanisms linked to tributyrin-mediated p53 activation. Using in vivo and in vitro models of liver cancer, we demonstrate that an increase in the level of p53 protein in nuclei, a decrease in the level of cytoplasmic p53, and, consequently, an increase in the ratio of nuclear/cytoplasmic p53 in rat preneoplastic livers and in rat and human HCC cell lines caused by tributyrin or sodium butyrate treatments was associated with a marked increase in the level of nuclear chromosome region maintenance 1 (CRM1) protein. Mechanistically, the increase in the level of nuclear p53 protein was associated with a substantially reduced binding interaction between CRM1 and p53. The results demonstrate that the cancer-inhibitory activity of sodium butyrate and its derivatives on liver carcinogenesis may be attributed to retention of p53 and CRM1 proteins in the nucleus, an event that may trigger activation of p53-mediated apoptotic cell death in neoplastic cells.


 

Effect of Tributyrin on Electrical Activity in the Small Intestine during Early Postoperative Period.
            (Tropskaya et al., 2015) Download
The effect of enteral administration of tributyrin on electrical activity in the upper segments of the small intestine was examined in rats on the model of postoperative ileus. This postoperative state is characterized with pronounced and long-term disturbances in generation of migrating myoelectric complex of the small intestine. The enteral administration of tributyrin in the early postoperative period aimed to suppress the non-adrenergic non-cholinergic influences and activation of the cholinergic anti-inflammatory pathways is an effective procedure to normalize the migrating myoelectric complex and therefore the coordinated propulsive peristalsis in the small intestine.

 


References

Conley, BA, et al. (1998), ‘Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors.’, Clin Cancer Res, 4 (3), 629-34. PubMed: 9533530
Edelman, MJ, et al. (2003), ‘Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug.’, Cancer Chemother Pharmacol, 51 (5), 439-44. PubMed: 12736763
Heidor, R, et al. (2012), ‘Anticarcinogenic actions of tributyrin, a butyric acid prodrug.’, Curr Drug Targets, 13 (14), 1720-29. PubMed: 23140283
Kang, SN, et al. (2011), ‘Preparation and evaluation of tributyrin emulsion as a potent anti-cancer agent against melanoma.’, Drug Deliv, 18 (2), 143-49. PubMed: 20946006
Kuefer, R, et al. (2004), ‘Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer.’, Br J Cancer, 90 (2), 535-41. PubMed: 14735205
Ortega, JF, et al. (2016), ‘Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein.’, Oncotarget, 7 (17), 24339-47. PubMed: 27013579
Tropskaya, NS, EA Kislyakova, and TS Popova (2015), ‘Effect of Tributyrin on Electrical Activity in the Small Intestine during Early Postoperative Period.’, Bull Exp Biol Med, 160 (2), 219-22. PubMed: 26645288