Silicon Articles 2

© 2011

Silicon in beer and brewing

            (Casey and Bamforth 2010) Download

BACKGROUND: It has been claimed that beer is one of the richest sources of silicon in the diet; however, little is known of the relationship between silicon content and beer style and the manner in which beer is produced. The purpose of this study was to measure silicon in a diversity of beers and ascertain the grist selection and brewing factors that impact the level of silicon obtained in beer. RESULTS: Commercial beers ranged from 6.4 to 56.5 mg L(-1) in silicon. Products derived from a grist of barley tended to contain more silicon than did those from a wheat-based grist, likely because of the high levels of silica in the retained husk layer of barley. Hops contain substantially more silicon than does grain, but quantitatively hops make a much smaller contribution than malt to the production of beer and therefore relatively less silicon in beer derives from them. During brewing the vast majority of the silicon remains with the spent grains; however, aggressive treatment during wort production in the brewhouse leads to increased extraction of silicon into wort and much of this survives into beer. CONCLUSION: It is confirmed that beer is a very rich source of silicon.

Oral silicon supplementation: an effective therapy for preventing oral aluminum absorption and retention in mammals

            (Domingo, Gomez et al. 2011) Download

Silicon is an essential element for some lower forms of life. However, it is not generally considered an essential nutrient for mammals and the mechanisms underlying its potential essentiality remain partially unknown. In recent years, a possible association between the aluminum and silicon levels in drinking water and Alzheimer's disease (AD) has been suggested. It has been reported that silicon might have a protective effect for limiting oral aluminum absorption. This review is focused primarily on the potential role of silicon in preventing oral aluminum absorption and retention in mammals. The results of a number of studies suggest that dietary silicon supplementation could be of therapeutic value for preventing chronic aluminum accumulation in the brain, and hence, be a potential therapy for AD. However, it must be noted that controversy remains about whether aluminum accumulation in the brain is a cause or a consequence of AD. It is suggested that further investigation of this issue is warranted.

Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort

            (Jugdaohsingh, Tucker et al. 2004) Download

The role of dietary silicon in bone health in humans is not known. In a cross-sectional, population-based study (2847 participants), associations between dietary silicon intake and BMD were investigated. Dietary silicon correlated positively and significantly with BMD at all hip sites in men and premenopausal women, but not in postmenopausal women, suggesting that increased silicon intake is associated with increased cortical BMD in these populations. INTRODUCTION: Osteoporosis is a burgeoning health and economic issue. Agents that promote bone formation are widely sought. Animal and cellular data suggest that the orthosilicate anion (i.e., dietary silicon) is involved in bone formation. The intake of silicon (Si, approximately 30 mg/day) is among the highest for trace elements in humans, but its contribution to bone health is not known. MATERIALS AND METHODS: In a cross-sectional, population-based study, we examined the association between silicon intake and bone mineral density (BMD) in 1251 men and 1596 pre- and postmenopausal women in the Framingham Offspring cohort (age, 30-87 years) at four hip sites and lumbar spine, adjusting for all potential confounding factors known to influence BMD and nutrient intake. RESULTS: Silicon intake correlated positively with adjusted BMD at four hip sites in men and premenopausal women, but not in postmenopausal women. No significant association was observed at the lumbar spine in any group. Categorical analysis by Si intake, or energy-adjusted Si intake, supported these findings, and showed large differences in BMD (up to 10%) between the highest (> 40 mg Si/day) and lowest (< 14 mg Si/day) quintiles of silicon intake. A significant association at the lumbar spine in men was also observed. Further analyses indicated that some of the effects seen for moderate consumption of alcoholic beverages on BMD might be attributed to Si intake. CONCLUSIONS: These findings suggest that higher dietary silicon intake in men and younger women may have salutary effects on skeletal health, especially cortical bone health, that has not been previously recognized. Confirmation of these results is being sought in a longitudinal study and by assessment of the influence of silicon intake on bone markers in this cohort.

Increased longitudinal growth in rats on a silicon-depleted diet

         (Jugdaohsingh, Calomme et al. 2008) Download

Silicon-deficiency studies in growing animals in the early 1970s reported stunted growth and profound defects in bone and other connective tissues. However, more recent attempts to replicate these findings have found mild alterations in bone metabolism without any adverse health effects. Thus the biological role of silicon remains unknown. Using a specifically formulated silicon-depleted diet and modern methods for silicon analysis and assessment of skeletal development, we undertook, through international collaboration between silicon researchers, an extensive study of long-term silicon depletion on skeletal development in an animal. 21-day old female Sprague-Dawley rats (n=20) were fed a silicon-depleted diet (3.2 microg Si/g feed) for 26 weeks and their growth and skeletal development were compared with identical rats (n=10) on the same diet but with silicon added as Si(OH)(4) to their drinking water (53.2 microg Si/g water); total silicon intakes were 24 times different. A third group of rats, receiving a standard rodent stock feed (322 microg Si/g feed) and tap water (5 microg Si/g water), served as a reference group for optimal growth. A series of anthropometric and bone quality measures were undertaken during and following the study. Fasting serum silicon concentrations and especially urinary silicon excretion were significantly lower in the silicon-deprived group compared to the supplemented group (P=0.03 and 0.004, respectively). Tibia and soft-tissue silicon contents did not differ between the two groups, but tibia silicon levels were significantly lower compared to the reference group (P<0.0001). Outward adverse health effects were not observed in the silicon-deprived group. However, body lengths from week 18 onwards (P<0.05) and bone lengths at necropsy (P</=0.002) were longer in this group. Moreover, these measures correlated inversely with serum silicon concentrations (P</=0.02). A reduction in bone growth plate thickness and an apparent increase in chondrocyte density were also observed in the silicon-deprived animals. No other differences were observed between the two groups, except for tibia phosphorus concentrations, which were lower in the silicon-deprived animals (P=0.0003). Thus in this study we were unable to reproduce the profound deficiency state reported in rats and chicks in the early 1970s. Indeed, although silicon intake and circulating fasting serum levels differed between the silicon-deprived and silicon-supplemented animals, tibia and soft-tissue levels did not and may explain the lack of difference in bone quality and bone markers (except serum CTx) between these two groups. Markedly higher tibia silicon levels in the reference group and nutritional differences between the formulated low-Si and reference diets suggest that one or more co-factors may be absent from the low-Si diet that affect silicon incorporation into bone. However, evidence for urinary silicon conservation (to maintain tissue levels), changes in bone/body lengths, bone calcium:phosphorus ratio and differences at the growth plate with silicon deprivation are all novel and deserve further study. These results suggest that rats actively maintain body silicon levels via urinary conservation, but the low circulating serum silicon levels during silicon deficiency result in inhibition of growth plate closure and increased longitudinal growth. Silicon-responsive genes and Si transporters are being investigated in the kidneys of these rats.

Absorption of silicon from artesian aquifer water and its impact on bone health in postmenopausal women: a 12 week pilot study

            (Li, Karp et al. 2010) Download

BACKGROUND: Decreased bone mineral density and osteoporosis in postmenopausal women represents a growing source of physical limitations and financial concerns in our aging population. While appropriate medical treatments such as bisphosphonate drugs and hormone replacement therapy exist, they are associated with serious side effects such as osteonecrosis of the jaw or increased cardiovascular risk. In addition to calcium and vitamin D supplementation, previous studies have demonstrated a beneficial effect of dietary silicon on bone health. This study evaluated the absorption of silicon from bottled artesian aquifer water and its effect on markers of bone metabolism. METHODS: Seventeen postmenopausal women with low bone mass, but without osteopenia or osteoporosis as determined by dual x-ray absorptiometry (DEXA) were randomized to drink one liter daily of either purified water of low-silicon content (PW) or silicon-rich artesian aquifer water (SW) (86 mg/L silica) for 12 weeks. Urinary silicon and serum markers of bone metabolism were measured at baseline and after 12 weeks and analyzed with two-sided t-tests with p < 0.05 defined as significant. RESULTS: The urinary silicon level increased significantly from 0.016 +/- 0.010 mg/mg creatinine at baseline to 0.037 +/- 0.014 mg/mg creatinine at week 12 in the SW group (p = 0.003), but there was no change for the PW group (0.010 +/- 0.004 mg/mg creatinine at baseline vs. 0.009 +/- 0.006 mg/mg creatinine at week 12, p = 0.679). The urinary silicon for the SW group was significantly higher in the silicon-rich water group compared to the purified water group (p < 0.01). NTx, a urinary marker of bone resorption did not change during the study and was not affected by the silicon water supplementation. No significant change was observed in the serum markers of bone formation compared to baseline measurements for either group. CONCLUSIONS: These findings indicate that bottled water from artesian aquifers is a safe and effective way of providing easily absorbed dietary silicon to the body. Although the silicon did not affect bone turnover markers in the short-term, the mineral's potential as an alternative prevention or treatment to drug therapy for osteoporosis warrants further longer-term investigation in the future. TRIAL REGISTRATION: Identifier: NCT01067508.

Micronutrients in parenteral nutrition: boron, silicon, and fluoride

            (Nielsen 2009) Download

Boron may be beneficial for bone growth and maintenance, central nervous system function, and the inflammatory response, and silicon may be beneficial for bone maintenance and wound healing. Fluoride is not an essential element but amounts provided by contamination may be beneficial for bone strength. Fluoride toxicity may be a concern in parenteral nutrition. Further studies are warranted to determine whether there are optimal amounts of boron and silicon that should be delivered to typical and special population patients receiving parenteral nutrition. In addition, further studies are needed to determine whether providing the dietary guideline of adequate intake amounts of fluoride parenterally would prevent or treat parenteral nutrition osteopenia.

Silicon deprivation does not significantly modify the acute white blood cell response but does modify tissue mineral distribution response to an endotoxin challenge

            (Nielsen 2010) Download

An experiment with rats was conducted to determine whether silicon deprivation affects the acute-phase immune response to an endotoxin challenge. Weanling female rats were assigned to two weight-matched groups of 24; one group was fed a basal diet containing about 1.9 microg Si/kg; the other group was fed the basal diet supplemented with 35 microg Si/kg as arginine silicate inositol complex. After being fed their respective diets for 8 weeks, 12 rats in each group were injected subcutaneously with 1 mg lipopolysaccharide (LPS)/kg body weight; the other 12 rats in each group were injected with deionized water. Two hours after injection, the rats were anesthetized with ether for collection of blood (for plasma), liver and femurs, and then euthanized by decapitation. LPS injection decreased total white blood cell, lymphocyte, monocyte, eosinophil, and basophil counts by 80-90%, but did not affect neutrophil counts. LPS injection also increased plasma tumor necrosis factor-alpha and osteopontin and decreased plasma hyaluronic acid. Silicon deprivation did not significantly affect any of these responses to LPS. Silicon in liver and silicon, iron, and zinc in femur were increased by LPS injection only in silicon-deprived rats. Silicon deprivation also increased monocyte counts and osteopontin and decreased femur zinc in rats not injected with LPS. The findings indicate that silicon deprivation does not affect the acute-immune phase decrease in inflammatory cell numbers and increase in inflammatory cytokines in response to an endotoxin challenge. Silicon deprivation, however, apparently causes slight chronic inflammation and might influence inflammatory cell proliferation in the chronic-phase inflammatory response.

Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver

            (Seaborn and Nielsen 2002) Download

We have shown that silicon (Si) deprivation decreases the collagen concentration in bone of 9-wk-old rats. Finding that Si deprivation also affects collagen at different stages in bone development, collagen-forming enzymes, or collagen deposition in other tissues would have implications that Si is important for both wound healing and bone formation. Therefore, 42 rats in experiment 1 and 24 rats in experiment 2 were fed a basal diet containing 2 or 2.6 microg Si/g, respectively, based on ground corn and casein, and supplemented with either 0 or 10 microg Si/g as sodium metasilicate. At 3 wk, the femur was removed from 18 of the 42 rats in experiment 1 for hydroxyproline analysis. A polyvinyl sponge was implanted beneath the skin of the upper back of each of the 24 remaining rats. Sixteen hours before termination and 2 wk after the sponge had been implanted, each rat was given an oral dose of 14C-proline (1.8 microCi/100 g body wt). The total amount of hydroxyproline was significantly lower in the tibia and sponges taken from Si-deficient animals than Si-supplemented rats. The disintegrations per minute of 14C-proline were significantly higher in sponge extracts from Si- deficient rats than Si-supplemented rats. Additional evidence of aberrations in proline metabolism with Si deprivation was that liver ornithine aminotransferase was significantly decreased in Si-deprived animals in experiment 2. Findings of an increased accumulation of 14C-proline and decreased total hydroxyproline in implanted sponges and decreased activity of a key enzyme in proline synthesis (liver ornithine aminotransferase) in Si-deprived animals indicates an aberration in the formation of collagen from proline in sites other than bone that is corrected by Si. This suggests that Si is a nutrient of concern in wound healing as well as bone formation.


Casey, T. R. and C. W. Bamforth (2010). "Silicon in beer and brewing." J Sci Food Agric 90(5): 784-8.

Domingo, J. L., M. Gomez, et al. (2011). "Oral silicon supplementation: an effective therapy for preventing oral aluminum absorption and retention in mammals." Nutr Rev 69(1): 41-51.

Jugdaohsingh, R., M. R. Calomme, et al. (2008). "Increased longitudinal growth in rats on a silicon-depleted diet." Bone 43(3): 596-606.

Jugdaohsingh, R., K. L. Tucker, et al. (2004). "Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort." J Bone Miner Res 19(2): 297-307.

Li, Z., H. Karp, et al. (2010). "Absorption of silicon from artesian aquifer water and its impact on bone health in postmenopausal women: a 12 week pilot study." Nutr J 9: 44.

Nielsen, F. H. (2009). "Micronutrients in parenteral nutrition: boron, silicon, and fluoride." Gastroenterology 137(5 Suppl): S55-60.

Nielsen, F. H. (2010). "Silicon deprivation does not significantly modify the acute white blood cell response but does modify tissue mineral distribution response to an endotoxin challenge." Biol Trace Elem Res 135(1-3): 45-55.

Seaborn, C. D. and F. H. Nielsen (2002). "Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver." Biol Trace Elem Res 89(3): 251-61.