Senescence Abstracts 3

©

Telomere length and telomerase activity; a Yin and Yang of cell senescence.
            (Axelrad et al., 2013) Download
Telomeres are repeating DNA sequences at the tip ends of the chromosomes that are diverse in length and in humans can reach a length of 15,000 base pairs. The telomere serves as a bioprotective mechanism of chromosome attrition at each cell division. At a certain length, telomeres become too short to allow replication, a process that may lead to chromosome instability or cell death. Telomere length is regulated by two opposing mechanisms: attrition and elongation. Attrition occurs as each cell divides. In contrast, elongation is partially modulated by the enzyme telomerase, which adds repeating sequences to the ends of the chromosomes. In this way, telomerase could possibly reverse an aging mechanism and rejuvenates cell viability. These are crucial elements in maintaining cell life and are used to assess cellular aging. In this manuscript we will describe an accurate, short, sophisticated and cheap method to assess telomere length in multiple tissues and species. This method takes advantage of two key elements, the tandem repeat of the telomere sequence and the sensitivity of the qRT-PCR to detect differential copy numbers of tested samples. In addition, we will describe a simple assay to assess telomerase activity as a complementary backbone test for telomere length.

Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.
            (Baker et al., 2016) Download
Cellular senescence, a stress-induced irreversible growth arrest often characterized by expression of p16(Ink4a) (encoded by the Ink4a/Arf locus, also known as Cdkn2a) and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time, and have been speculated to have a role in ageing. To explore the physiological relevance and consequences of naturally occurring senescent cells, here we use a previously established transgene, INK-ATTAC, to induce apoptosis in p16(Ink4a)-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. We show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. The clearance of p16(Ink4a)-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Thus, p16(Ink4a)-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in several organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.

Tocotrienol and cancer metastasis.
            (De Silva et al., 2016) Download
Tumor metastasis involves some of the most complex and dynamic processes in cancer, often leading to poor quality of life and inevitable death. The search for therapeutic compounds and treatment strategies to prevent and/or manage metastasis is the ultimate challenge to fight cancer. In the past two decades, research focus on vitamin E has had a shift from saturated tocopherols to unsaturated tocotrienols (T3). Despite sharing structural similarities with tocopherols, T3 strive to gain scientific prominence due to their anti-cancer effects. Recent studies have shed some light on the anti-metastatic properties of T3. In this review, the roles of T3 in each step of the metastatic process are discussed. During the invasion process, signaling pathways that regulate the extracellular matrix and tumor cell motility have been reported to be modulated by T3. Although studies on T3 and tumor cell migration are fairly limited, they were shown to play a vital role in the suppression of angiogenesis. Furthermore, the anti-inflammatory effect of T3 could be highly promising in the regulation of tumor microenvironment, which is crucial in supporting tumor growth in distant organs.

Clinical investigation of the protective effects of palm vitamin E tocotrienols on brain white matter.
            (Gopalan et al., 2014) Download
BACKGROUND AND PURPOSE:  Previous cell-based and animal studies showed mixed tocotrienols are neuroprotective, but the effect is yet to be proven in humans. Thus, the present study aimed to evaluate the protective activity of mixed tocotrienols in humans with white matter lesions (WMLs). WMLs are regarded as manifestations of cerebral small vessel disease, reflecting varying degrees of neurodegeneration and tissue damage with potential as a surrogate end point in clinical trials. METHODS:  A total of 121 volunteers aged ≥35 years with cardiovascular risk factors and MRI-confirmed WMLs were randomized to receive 200 mg mixed tocotrienols or placebo twice a day for 2 years. The WML volumes were measured from MRI images taken at baseline, 1 year, and 2 years using a validated software and were compared. Fasting blood samples were collected for full blood chemistry investigation. RESULTS:  According to per-protocol (88 volunteers) and intention-to-treat (121 volunteers) analyses, the mean WML volume of the placebo group increased after 2 years, whereas that of the tocotrienol-supplemented group remained essentially unchanged. The mean WML volume change between the 2 groups was not significantly different (P=0.150) at the end of 1 year but was significant at the end of 2 years for both per-protocol and intention-to-treat analyses (P=0.019 and P=0.018). No significant difference was observed in the blood chemistry parameters between the 2 groups. CONCLUSIONS:  Mixed tocotrienols were found to attenuate the progression of WMLs. CLINICAL TRIAL REGISTRATION URL:  http://www.clinicaltrials.gov. Unique identifier: NCT00753532.

Tocotrienol improves learning and memory deficit of aged rats.
            (Kaneai et al., 2016) Download
To define whether tocotrienol (T-3) improves cognitive deficit during aging, effect of T-3 on learning and memory functions of aged rats was assessed. It was found that T-3 markedly counteracts the decline in learning and memory function in aged rats. Quantitative analysis of T-3 content in the rat brain showed that the aged rats fed T-3 mixture-supplemented diet revealed the transport of α- and γ-T-3 to the brain. In contrast, normal young rats fed the same diet did not exhibit brain localization. Furthermore, the T-3 inhibited age-related decreases in the expression of certain blood brain barrier (BBB) proteins, including caludin-5, occludin and junctional adhesion molecule (JAM). It was found that the activation of the cellular proto-oncogene c-Src and extracellular signal-regulated protein kinase (ERK), in the mitogen-activated protein kinase (MAPK) cell signaling pathway for neuronal cell death, was markedly inhibited by T-3. These results may reveal that aging induces partial BBB disruption caused by oxidative stress, thereby enabling the transport of T-3 through the BBB to the central nervous system, whereupon neuronal protection may be mediated by inhibition of c-Src and/or ERK activation, resulting in an improvement in age-related cognitive deficits.

What really declines with age? The Hayflick Lecture for 2006 35th American Aging Association.
            (Kitani, 2007) Download
In order to understand the basic mechanisms underlying the organismic aging process, considerable efforts have been devoted in the last half-century to biochemical (enzyme activity) alterations in specific tissues and organs of various organisms associated with aging. When a decline in enzyme activities with age has been found in a study, especially for key enzymes such as antioxidant enzymes, the results have often been interpreted as a cause for the aging of the entire body. Retrospectively, however, these changes turned out to be so variable--depending on species, strains and sexes of animals--that the interpretation of these results in general terms of aging became invalid. Further, unlike the prediction for the whole human body, many enzyme activities in a vital organ, such as the liver, remained unchanged, as long as the old subjects remained healthy. However, enzyme activities in old animals and humans are often more susceptible to morbidities and frailties, which themselves are often accompanied by infections and malnutrition. Despite the rather stable enzyme functions in the liver with age, a distinct and progressive decline in the lateral diffusion coefficient of proteins of hepatocyte plasma membranes has been demonstrated by fluorescence recovery after photobleaching (FRAP), which was implicated as the cause for the decline of hepatocyte functions such as ouabain (and taurocholate) hepatic uptake and their eventual biliary excretion. Since a similar decline in protein diffusion coefficients was observed in brain and muscle cells, it is likely that these changes are occurring in common with many cell types of the body, thus causing a delay in transmembrane transport of endogenous and exogenous substances whose transports are mediated by membrane proteins. In attempts to prolong the life spans of animals other than by calorie restriction, but instead using deprenyl or tetrahydrocurcumin, works by the author and coworkers are introduced and discussed. Despite limited success along these lines thus far, further attempts are encouraged, primarily to understand the mechanisms underlying organismic aging processes and to find a practical way to prolong the health span of the elderly.

Cytotoxicity and apoptotic activities of alpha-, gamma- and delta-tocotrienol isomers on human cancer cells.
            (Lim et al., 2014) Download
BACKGROUND:  Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched. METHODS:  The cytotoxic effects of alpha-, gamma- and delta-tocotrienols in both A549 and U87MG cancer cells were first determined at the cell viability and morphological aspects. DNA damage types were then identified by comet assay and flow cytometric study was carried out to support the incidence of apoptosis. The involvements of caspase-8, Bid, Bax and mitochondrial membrane permeability (MMP) in the execution of apoptosis were further expounded. RESULTS:  All tocotrienols inhibited the growth of A549 and U87MG cancer cells in a concentration- and time-dependent manner. These treated cancer cells demonstrated some hallmarks of apoptotic morphologies, apoptosis was further confirmed by cell accumulation at the pre-G1 stage. All tocotrienols induced only double strand DNA breaks (DSBs) and no single strand DNA breaks (SSBs) in both treated cancer cells. Activation of caspase-8 leading to increased levels of Bid and Bax as well as cytochrome c release attributed by the disruption of mitochondrial membrane permeability in both A549 and U87MG cells were evident. CONCLUSIONS:  This study has shown that delta-tocotrienol, in all experimental approaches, possessed a higher efficacy (shorter induction period) and effectiveness (higher induction rate) in the execution of apoptosis in both A549 and U87MG cancer cells as compared to alpha- and gamma-tocotrienols. Tocotrienols in particular the delta isomer can be an alternative chemotherapeutic agent for treating lung and brain cancers.

Estrogen receptor-mediated effect of δ-tocotrienol prevents neurotoxicity and motor deficit in the MPTP mouse model of Parkinson's disease.
            (Nakaso et al., 2016) Download
Neuroprotection following signal transduction has been investigated recently as a strategy for Parkinson's disease (PD) therapy. While oxidative stress is important in the pathogenesis of PD, neuroprotection using antioxidants such as α-tocopherol have not been successful. δ-tocotrienol (δT3), a member of the vitamin E family, has received attention because of activities other than its antioxidative effects. In the present study, we examined the estrogen receptor-β (ERβ)-mediated neuroprotective effects of δT3 in a mouse model of PD. ERβ is expressed in neuronal cells, including dopaminergic neurons in the substantia nigra. Daily forced oral administration of δT3 inhibited the loss of dopaminergic neurons in the substantia nigra. In addition, the ER inhibitor tamoxifen canceled the neuroprotective effects of δT3. Moreover, δT3 administration improved the performance of the PD mice in the wheel running activity, while tamoxifen inhibited this improved performance. These results suggest that the oral administration of δT3 may be useful in the treatment of PD patients, and ERβ may be a candidate target for the neuroprotection activity of δT3.

δ-Tocotrienol treatment is more effective against hypoxic tumor cells than normoxic cells: potential implications for cancer therapy.
            (Shibata et al., 2015) Download
Tocotrienols, unsaturated forms of vitamin E, inhibit the proliferation of a variety of cancer cells and suppress angiogenesis. However, the mechanisms underlying those effects on cancer cell growth remain unclear especially under hypoxic conditions. In this study, we demonstrated that δ-tocotrienol (δ-T3) could be used as a novel anticancer agent against human colorectal adenocarcinoma (DLD-1) cells under both normoxic and hypoxic conditions. δ-T3 inhibited the growth of DLD-1 cells in a dose-dependent fashion by inducing cell cycle arrest and apoptosis. This effect was more potent under hypoxic than normoxic conditions. The anticancer effect of δ-T3 was achieved by its up-regulation of cyclin-dependent kinase inhibitors (p21 and p27), the activation of caspases and the suppression of phosphorylation of protein kinase B (Akt) at Thr(308) and Ser(473). In in vivo studies, oral administration of rice bran tocotrienol (RBT3, mainly γ-T3) (10 mg/mouse/day) significantly inhibited tumor growth in nude mice. In tumor analyses, RBT3 activated p21, p27, caspase-3 and caspase-9 and decreased Akt phosphorylation. Furthermore, immunostaining revealed that RBT3 decreased the number of cells positive for CD31/platelet endothelial cell adhesion molecule-1 in microvessels in the tumor. Taken together, these data suggest that tocotrienols are potent antitumor agents capable of inducing apoptosis and inhibiting angiogenesis under both hypoxic and normoxic conditions. Tocotrienols could have significant therapeutic potential in the clinical treatment of tumors.

γ-Tocotrienol-induced autophagy in malignant mammary cancer cells.
            (Tiwari et al., 2014) Download
γ-Tocotrienol, a member of the vitamin E family of compounds, displays potent antiproliferative and cytotoxic effects in a variety of cancer cell types at treatment doses that have little or no effect on normal cell viability or growth. Autophagy is a tightly regulated lysosomal self-digested process that can either promote cell survival or programmed cell death, but the role of autophagy in mediating γ-tocotrienol-induced cytotoxicity in breast cancer is not presently completely understood. Mouse (+SA) and human (MCF-7 and MDA-MD-231) mammary tumor cells lines were exposed to 0-40 µmol/L γ-tocotrienol for a 24 h treatment period. γ-Tocotrienol treatment caused a relatively large increase in the accumulation of monodansylcadaverine (MDC)-labeled vacuoles, a marker of autophagosome formation, in all tumor cell lines. Results also showed that γ-tocotrienol treatment induced an increased conversion of microtubule-associated protein, 1A/1B-light chain 3, from its cytosolic form (LC3B-I) to its lipidated form (LC3B-II), increased Beclin-1 levels, and increased acridine orange staining as determined by flow cytometry analysis, providing further evidence of γ-tocotrienol-induced autophagy in these mammary cancer cell lines. In contrast, similar treatment with γ-tocotrienol was not found to increase autophagy marker expression in immortalized mouse (CL-S1) and human (MCF-10 A) normal mammary epithelial cell lines. Treatment with γ-tocotrienol also caused a reduction in PI3K/Akt/mTOR signaling and a corresponding increase in the Bax/Bcl-2 ratio, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase (PARP) levels in these cancer cell lines, suggesting that γ-tocotrienol-induced autophagy may be involved in the initiation of apoptosis. In summary, these findings demonstrate that the cytotoxic effects of γ-tocotrienol are associated with the induction of autophagy in a mouse and human mammary cancer cells.

Why tocotrienols work better: insights into the in vitro anti-cancer mechanism of vitamin E.
            (Viola et al., 2012) Download
The selective constraint of liver uptake and the sustained metabolism of tocotrienols (T3) demonstrate the need for a prompt detoxification of this class of lipophilic vitamers, and thus the potential for cytotoxic effects in hepatic and extra-hepatic tissues. Hypomethylated (γ and δ) forms of T3 show the highest in vitro and in vivo metabolism and are also the most potent natural xenobiotics of the entire vitamin E family of compounds. These stimulate a stress response with the induction of detoxification and antioxidant genes. Depending on the intensity of this response, these genes may confer cell protection or alternatively they stimulate a senescence-like phenotype with cell cycle inhibition or even mitochondrial toxicity and apoptosis. In cancer cells, the uptake rate and thus the cell content of these vitamers is again higher for the hypomethylated forms, and it is the critical factor that drives the dichotomy between protection and toxicity responses to different T3 forms and doses. These aspects suggest the potential for marked biological activity of hypomethylated "highly metabolized" T3 that may result in cytoprotection and cancer prevention or even chemotherapeutic effects. Cytotoxicity and metabolism of hypomethylated T3 have been extensively investigated in vitro using different cell model systems that will be discussed in this review paper as regard molecular mechanisms and possible relevance in cancer therapy.

Leonard Hayflick and the limits of ageing.
            (Watts, 2011) Download
There is only one eponymous limit in biomedicine: the Hayflick Limit, the number of times (about 50) that normal human embryonic cells can divide before they succumb to senescence.

Inhibition of proliferation and induction of apoptosis by gamma-tocotrienol in human colon carcinoma HT-29 cells.
            (Xu et al., 2009) Download
OBJECTIVE:  gamma-Tocotrienol is a major component of the tocotrienol-rich fraction of palm oil, but there is limited evidence that it has antitumor activity. In particular, the effects of gamma-tocotrienol on human colon carcinoma cells have not been reported. To investigate the chemopreventive effects of gamma-tocotrienol on colon cancer, we examined its capacity to inhibit proliferation and induce apoptosis in HT-29 cells and explored the mechanism underlying these effects. METHODS:  We cultured HT-29 cells in the presence of gamma-tocotrienol. The effect of gamma-tocotrienol on cell proliferation was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, mitotic index, and colony formation. The cell-cycle distribution was investigated by flow cytometry. We measured apoptosis by nuclear staining, transmission electron microscopy, and DNA fragmentation. Apoptosis-related proteins and the nuclear factor-kappaB p65 protein were determined by western blotting and immunofluorescence. RESULTS:  gamma-Tocotrienol inhibited cell growth and arrested HT-29 cells in G(0)/G(1) phase. The 50% inhibitory concentration was 31.7 micromol/L (48 h). gamma-Tocotrienol-induced apoptosis in HT-29 cells was accompanied by downregulation of Bcl-2, upregulation of Bax, and activation of caspase-3. Furthermore, we found that gamma-tocotrienol reduced the expression level of total nuclear factor-kappaB p65 protein and inhibited its nuclear translocation. CONCLUSION:  The results indicated that gamma-tocotrienol inhibits cell proliferation and induces apoptosis in HT-29 cells in a time- and dose-dependent manner, and that this process is accompanied by cell-cycle arrest at G(0)/G(1), an increased Bax/Bcl-2 ratio, and activation of caspase-3. Our data also indicated that nuclear factor-kappaB p65 protein may be involved in these effects.

Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols.
            (Zhao et al., 2016) Download
Tocotrienols (T3s) are a subclass of unsaturated vitamin E that have been extensively studied for their anti-proliferative, anti-oxidative and anti-inflammatory properties in numerous cancer studies. Recently, T3s have received increasing attention due to their previously unrecognized property to attenuate obesity and its associated metabolic complications. In this review, we comprehensively evaluated the recent published scientific literature about the influence of T3s on obesity, with a particular emphasis on the signaling pathways involved. T3s have been demonstrated in animal models or human subjects to reduce fat mass, body weight, plasma concentrations of free fatty acid, triglycerides and cholesterol, as well as to improve glucose and insulin tolerance. Their mechanisms of action in adipose tissue mainly include (1) modulation of fat cell adipogenesis and differentiation; (2) modulation of energy sensing; (3) induction of apoptosis in preadipocytes and (4) modulation of inflammation. Studies have also been conducted to investigate the effects of T3s on other targets, e.g., the immune system, liver, muscle, pancreas and bone. Since δT3 and γT3 are regarded as the most active isomers among T3s, their clinical relevance to reduce obesity should be investigated in human trials.

 


References

Axelrad, MD, T Budagov, and G Atzmon (2013), ‘Telomere length and telomerase activity; a Yin and Yang of cell senescence.’, J Vis Exp, (75), e50246. PubMed: 23728273
Baker, DJ, et al. (2016), ‘Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.’, Nature, 530 (7589), 184-89. PubMed: 26840489
De Silva, L, et al. (2016), ‘Tocotrienol and cancer metastasis.’, Biofactors, 42 (2), 149-62. PubMed: 26948691
Gopalan, Y, et al. (2014), ‘Clinical investigation of the protective effects of palm vitamin E tocotrienols on brain white matter.’, Stroke, 45 (5), 1422-28. PubMed: 24699052
Kaneai, N, et al. (2016), ‘Tocotrienol improves learning and memory deficit of aged rats.’, J Clin Biochem Nutr, 58 (2), 114-21. PubMed: 27013777
Kitani, K (2007), ‘What really declines with age? The Hayflick Lecture for 2006 35th American Aging Association.’, Age (Dordr), 29 (1), 1-14. PubMed: 19424826
Lim, SW, et al. (2014), ‘Cytotoxicity and apoptotic activities of alpha-, gamma- and delta-tocotrienol isomers on human cancer cells.’, BMC Complement Altern Med, 14 469. PubMed: 25480449
Nakaso, K, et al. (2016), ‘Estrogen receptor-mediated effect of δ-tocotrienol prevents neurotoxicity and motor deficit in the MPTP mouse model of Parkinson’s disease.’, Neurosci Lett, 610 117-22. PubMed: 26523792
Shibata, A, et al. (2015), ‘δ-Tocotrienol treatment is more effective against hypoxic tumor cells than normoxic cells: potential implications for cancer therapy.’, J Nutr Biochem, 26 (8), 832-40. PubMed: 25979648
Tiwari, RV, P Parajuli, and PW Sylvester (2014), ‘γ-Tocotrienol-induced autophagy in malignant mammary cancer cells.’, Exp Biol Med (Maywood), 239 (1), 33-44. PubMed: 24231340
Viola, V, et al. (2012), ‘Why tocotrienols work better: insights into the in vitro anti-cancer mechanism of vitamin E.’, Genes Nutr, 7 (1), 29-41. PubMed: 21505906
Watts, G (2011), ‘Leonard Hayflick and the limits of ageing.’, Lancet, 377 (9783), 2075. PubMed: 21684371
Xu, WL, et al. (2009), ‘Inhibition of proliferation and induction of apoptosis by gamma-tocotrienol in human colon carcinoma HT-29 cells.’, Nutrition, 25 (5), 555-66. PubMed: 19121919
Zhao, L, et al. (2016), ‘Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols.’, Molecules, 21 (3), 344. PubMed: 26978344