Parabiosis Abstracts 1



Aging and brain rejuvenation as systemic events.
(Bouchard and Villeda, 2015) Download
The effects of aging were traditionally thought to be immutable, particularly evident in the loss of plasticity and cognitive abilities occurring in the aged central nervous system (CNS). However, it is becoming increasingly apparent that extrinsic systemic manipulations such as exercise, caloric restriction, and changing blood composition by heterochronic parabiosis or young plasma administration can partially counteract this age-related loss of plasticity in the aged brain. In this review, we discuss the process of aging and rejuvenation as systemic events. We summarize genetic studies that demonstrate a surprising level of malleability in organismal lifespan, and highlight the potential for systemic manipulations to functionally reverse the effects of aging in the CNS. Based on mounting evidence, we propose that rejuvenating effects of systemic manipulations are mediated, in part, by blood-borne 'pro-youthful' factors. Thus, systemic manipulations promoting a younger blood composition provide effective strategies to rejuvenate the aged brain. As a consequence, we can now consider reactivating latent plasticity dormant in the aged CNS as a means to rejuvenate regenerative, synaptic, and cognitive functions late in life, with potential implications even for extending lifespan. We review evidence of brain rejuvenation focusing on several systemic manipulations - exercise, caloric restriction, heterochronic parabiosis, and young plasma administration - and their ability to restore regenerative capacity, synaptic plasticity, and cognitive function in the brain.


Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity.
            (Conboy et al., 2013) Download
Pairing two animals in parabiosis to test for systemic or circulatory factors from one animal affecting the other animal has been used in scientific studies for at least 150 years. These studies have led to advances in fields as diverse as endocrinology, immunology, and oncology. A variation on the technique, heterochronic parabiosis, whereby two animals of different ages are joined to test for systemic regulators of aspects of aging or age-related diseases also has almost a century-long scientific history. In this review, we focus on the history of heterochronic parabiosis, methodological considerations and caveats, and the major advances that have emerged from those studies, including recent advances in our understanding of stem cell aging.

The Fountain of Youth: A Tale of Parabiosis, Stem Cells, and Rejuvenation.
            (Conese et al., 2017) Download
Transfusion (or drinking) of blood or of its components has been thought as a rejuvenation method since ancient times. Parabiosis, the procedure of joining two animals so that they share each others blood circulation, has revitalized the concept of blood as a putative drug. Since 2005, a number of papers have reported the anti-ageing effect of heterochronic parabiosis, which is joining an aged mouse to a young partner. The hallmark of aging is the decline of regenerative properties in most tissues, partially attributed to impaired function of stem and progenitor cells. In the parabiosis experiments, it was elegantly shown that factors derived from the young systemic environment are able to activate molecular signaling pathways in hepatic, muscle or neural stem cells of the old parabiont leading to increased tissue regeneration. Eventually, further studies have brought to identify some soluble factors in part responsible for these rejuvenating effects, including the chemokine CCL11, the growth differentiation factor 11, a member of the TGF-β superfamily, and oxytocin. The question about giving whole blood or specific factors in helping rejuvenation is open, as well as the mechanisms of action of these factors, deserving further studies to be translated into the life of (old) human beings.

A revival of parabiosis in biomedical research.
            (Eggel and Wyss-Coray, 2014) Download
Modern medicine wields the power to treat large numbers of diseases and injuries most of us would have died from just a hundred years ago, yet many of the most devastating diseases of our time are still untreatable. Chronic conditions of age such as cardiovascular disease, diabetes, osteoarthritis or Alzheimer's disease turn out to be of a complexity that may require transformative ideas and paradigms to understand and treat them. Parabiosis, which is characterised by a shared blood supply between two surgically connected animals, may just provide such a transformative experimental paradigm. Although forgotten and shunned now in many countries, it has contributed to major breakthroughs in tumour biology, endocrinology and transplantation research in the past century. Interestingly, recent studies from the United States and Britain are reporting stunning advances in stem cell biology and tissue regeneration using parabiosis between young and old mice, indicating a possible revival of this paradigm. We review here briefly the history of parabiosis and discuss its utility to study physiological and pathophysiological processes. We argue that parabiosis is a technique that should enjoy wider acceptance and application, and that policies should be revisited to allow its use in biomedical research.

A Young Blood Environment Decreases Aging of Senile Mice Kidneys.
            (Huang et al., 2018) Download
Whether changes in internal body environment affect kidney aging remains unclear. Specifically, it is unknown whether transplanted kidneys from older donors recover from tissue damage after placement in younger recipients. In this study, a parabiosis animal model was established to investigate the effects of a young internal body environment on aged kidneys. The animals were divided into six groups: young (Ycon) and old control (Ocon) groups, isochronic youth-youth group (Y-IP), elderly-elderly group (O-IP), and heterochronic youth (Y-HP) and elderly (O-HP) groups. After parabiosis, tubule and interstitial tissue scores in the O-HP group were significantly lower than in the Ocon and O-IP groups. The expression of aging-related protein p16 and SA-β-gal in the O-HP group was significantly reduced compared with the Ocon and O-IP groups. Autophagy factors Atg5 and LC3BII were significantly upregulated, whereas the expression of the autophagic degradation marker (P62) was significantly downregulated in the O-HP group compared with the Ocon and O-IP groups. With the same comparison, the positive cells of TUNEL staining and the expression of IL-6 and IL-1β were significantly reduced, whereas the total/cleaved caspase-3 and total/pNF-κB were significantly increased in the O-HP group. The results demonstrated that a young blood environment significantly reduces kidney aging. These findings provide new evidence supporting an increase in the upper age limit for human kidney transplantation donors.

Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.
            (Katsimpardi et al., 2014) Download
In the adult central nervous system, the vasculature of the neurogenic niche regulates neural stem cell behavior by providing circulating and secreted factors. Age-related decline of neurogenesis and cognitive function is associated with reduced blood flow and decreased numbers of neural stem cells. Therefore, restoring the functionality of the niche should counteract some of the negative effects of aging. We show that factors found in young blood induce vascular remodeling, culminating in increased neurogenesis and improved olfactory discrimination in aging mice. Further, we show that GDF11 alone can improve the cerebral vasculature and enhance neurogenesis. The identification of factors that slow the age-dependent deterioration of the neurogenic niche in mice may constitute the basis for new methods of treating age-related neurodegenerative and neurovascular diseases.

Intermittent heterochronic plasma exchange as a modality for delaying cellular senescence-a hypothesis.
            (Kiprov, 2013) Download
The population of baby boomers (age 60-65) is rapidly increasing globally. The aging of the human body is associated with the decline of cellular function which leads to the development of a variety of diseases. The increased demand for health care for the aging population creates significant financial burden to any healthcare system. Developing strategies and health intervention methods to ameliorate this situation is paramount. Experiments utilizing heterochronic parabiosis in mice have demonstrated that replacing the aging cellular milieu with the plasma of a young experimental animal leads to reversal of cellular senescence. This article describes a hypothetical model of intermittent heterochronic plasma exchange in humans as a modality for heterochronic parabiosis in an attempt to delay cellular senescence.

Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle.
            (Sinha et al., 2014b) Download
Parabiosis experiments indicate that impaired regeneration in aged mice is reversible by exposure to a young circulation, suggesting that young blood contains humoral "rejuvenating" factors that can restore regenerative function. Here, we demonstrate that the circulating protein growth differentiation factor 11 (GDF11) is a rejuvenating factor for skeletal muscle. Supplementation of systemic GDF11 levels, which normally decline with age, by heterochronic parabiosis or systemic delivery of recombinant protein, reversed functional impairments and restored genomic integrity in aged muscle stem cells (satellite cells). Increased GDF11 levels in aged mice also improved muscle structural and functional features and increased strength and endurance exercise capacity. These data indicate that GDF11 systemically regulates muscle aging and may be therapeutically useful for reversing age-related skeletal muscle and stem cell dysfunction.


Testosterone is essential for skeletal muscle growth in aged mice in a heterochronic parabiosis model.
            (Sinha et al., 2014a) Download
As humans age, they lose both muscle mass and strength (sarcopenia). Testosterone, a circulating hormone, progressively declines in aging and is associated with loss of muscle mass and strength. The surgical joining of a young and old mouse (heterochronic parabiosis) activates Notch signaling and restores muscle regenerative potential in aged mice. We hypothesize that testosterone is at least one of the factors required for the improvement seen in muscles in old mice in heterochronic parabiosis with young mice. To test this hypothesis, we established the following heterochronic parabioses between young (Y; 5 months old) and old (O; 22-23 months old) C57BL6 male mice: (1) Y:O; (2) castrated Y:O (ØY:O); (3) castrated + testosterone-treated Y:O (ØY + T:O). A group of normal young mice received empty implants, and old mice were used as controls. Parabiotic pairings were maintained for 4 weeks prior to analysis. Serum testosterone levels were three-fold higher in young than in old mice. The ØY + T:O pairing demonstrated significantly elevated levels of serum testosterone and an improvement in gastrocnemius muscle weight, muscle ultrastructure, muscle fiber cross-sectional area, and Notch-1 expression in old mice. These changes were not present in aged mice in the ØY:O pairing. These data indicate that testosterone has a critical role in mediating the improved muscle mass and ultrastructure seen in an experimental model of heterochronic parabiosis.



Conboy, MJ, IM Conboy, and TA Rando (2013), ‘Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity.’, Aging Cell, 12 (3), 525-30. PubMed: 23489470
Conese, M, et al. (2017), ‘The Fountain of Youth: A Tale of Parabiosis, Stem Cells, and Rejuvenation.’, Open Med (Wars), 12 376-83. PubMed: 29104943
Bouchard, J and SA Villeda (2015), ‘Aging and brain rejuvenation as systemic events.’, J Neurochem, 132 (1), 5-19. PubMed: 25327899
Eggel, A and T Wyss-Coray (2014), ‘A revival of parabiosis in biomedical research.’, Swiss Med Wkly, 144 w13914. PubMed: 24496774
Huang, Q, et al. (2018), ‘A Young Blood Environment Decreases Aging of Senile Mice Kidneys.’, J Gerontol A Biol Sci Med Sci, 73 (4), 421-28. PubMed: 29040401
Katsimpardi, L, et al. (2014), ‘Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.’, Science, 344 (6184), 630-34. PubMed: 24797482
Kiprov, DD (2013), ‘Intermittent heterochronic plasma exchange as a modality for delaying cellular senescence-a hypothesis.’, J Clin Apher, 28 (6), 387-89. PubMed: 23893695
Sinha, I, et al. (2014a), ‘Testosterone is essential for skeletal muscle growth in aged mice in a heterochronic parabiosis model.’, Cell Tissue Res, 357 (3), 815-21. PubMed: 24859218
Sinha, M, et al. (2014b), ‘Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle.’, Science, 344 (6184), 649-52. PubMed: 24797481