HDAC Abstracts 1

©

Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau

         (Green, Steffan et al. 2008) Download

Memory loss is the signature feature of Alzheimer's disease, and therapies that prevent or delay its onset are urgently needed. Effective preventive strategies likely offer the greatest and most widespread benefits. Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance memory and synaptic plasticity. We evaluated the efficacy of nicotinamide, a competitive inhibitor of the sirtuins or class III NAD(+)-dependent HDACs in 3xTg-AD mice, and found that it restored cognitive deficits associated with pathology. Nicotinamide selectively reduces a specific phospho-species of tau (Thr231) that is associated with microtubule depolymerization, in a manner similar to inhibition of SirT1. Nicotinamide also dramatically increased acetylated alpha-tubulin, a primary substrate of SirT2, and MAP2c, both of which are linked to increased microtubule stability. Reduced phosphoThr231-tau was related to a reduction of monoubiquitin-conjugated tau, suggesting that this posttranslationally modified form of tau may be rapidly degraded. Overexpression of a Thr231-phospho-mimic tau in vitro increased clearance and decreased accumulation of tau compared with wild-type tau. These preclinical findings suggest that oral nicotinamide may represent a safe treatment for AD and other tauopathies, and that phosphorylation of tau at Thr231 may regulate tau stability.


The dynamics of HDAC activity on memory formation

         (Grissom and Lubin 2009) Download

Histone deacetylases (HDACs) have previously been shown to be critical for the formation of long-term memories. Recent findings now show that a specific HDAC isoform, HDAC2, negatively regulates formation of hippocampus-dependent memory. These recent findings published in Nature highlight potential new therapeutic interventions for the treatment of memory impairments associated with human neurological disorders.

HDAC2 negatively regulates memory formation and synaptic plasticity

         (Guan, Haggarty et al. 2009) Download

Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wild-type mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACis requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not that of HDAC1, decreased dendritic spine density, synapse number, synaptic plasticity and memory formation. Conversely, Hdac2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic treatment with HDACis in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic treatment with HDACis. Correspondingly, treatment with HDACis failed to further facilitate memory formation in Hdac2-deficient mice. Furthermore, analysis of promoter occupancy revealed an association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Taken together, our results suggest that HDAC2 functions in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment.


Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer

         (Jung-Hynes, Reiter et al. 2010) Download

Histone deacetylases (HDAC) have been under intense scientific investigation for a number of years. However, only recently the unique class III HDAC, sirtuins, have gained increasing investigational momentum. Originally linked to longevity in yeast, sirtuins and more specifically, SIRT1 have been implicated in numerous biological processes having both protective and/or detrimental effects. SIRT1 appears to play a critical role in the process of carcinogenesis, especially in age-related neoplasms. Similarly, alterations in circadian rhythms as well as production of the pineal hormone melatonin have been linked to aging and cancer risk. Melatonin has been found act as a differentiating agent in some cancer cells and to lower their invasive and metastatic status. In addition, melatonin synthesis and release occurs in a circadian rhythm fashion and it has been linked to the core circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes). Melatonin has also been associated with chronotherapy, the timely administration of chemotherapy agents to optimize trends in biological cycles. Interestingly, a recent set of studies have linked SIRT1 to the circadian rhythm machinery through direct deacetylation activity as well as through the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway. In this review, we provide evidence for a possible connection between sirtuins, melatonin, and the circadian rhythm circuitry and their implications in aging, chronomodulation, and cancer.

Loss of histone deacetylase 2 improves working memory and accelerates extinction learning

         (Morris, Mahgoub et al. 2013) Download

Histone acetylation and deacetylation can be dynamically regulated in response to environmental stimuli and play important roles in learning and memory. Pharmacological inhibition of histone deacetylases (HDACs) improves performance in learning tasks; however, many of these classical agents are "pan-HDAC" inhibitors, and their use makes it difficult to determine the roles of specific HDACs in cognitive function. We took a genetic approach using mice lacking the class I HDACs, HDAC1 or HDAC2, in postmitotic forebrain neurons to investigate the specificity or functional redundancy of these HDACs in learning and synaptic plasticity. We show that selective knock-out of Hdac2 led to a robust acceleration of the extinction rate of conditioned fear responses and a conditioned taste aversion as well as enhanced performance in an attentional set-shifting task. Hdac2 knock-out had no impact on episodic memory or motor learning, suggesting that the effects are task-dependent, with the predominant impact of HDAC2 inhibition being an enhancement in an animal's ability to rapidly adapt its behavioral strategy as a result of changes in associative contingencies. Our results demonstrate that the loss of HDAC2 improves associative learning, with no effect in nonassociative learning tasks, suggesting a specific role for HDAC2 in particular types of learning. HDAC2 may be an intriguing target for cognitive and psychiatric disorders that are characterized by an inability to inhibit behavioral responsiveness to maladaptive or no longer relevant associations.

Targeting HDACs: a promising therapy for Alzheimer's disease

         (Xu, Dai et al. 2011) Download

Epigenetic modifications like DNA methylation and histone acetylation play an important role in a wide range of brain disorders. Histone deacetylases (HDACs) regulate the homeostasis of histone acetylation. Histone deacetylase inhibitors, which initially were used as anticancer drugs, are recently suggested to act as neuroprotectors by enhancing synaptic plasticity and learning and memory in a wide range of neurodegenerative and psychiatric disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). To reveal the physiological roles of HDACs may provide us with a new perspective to understand the mechanism of AD and to develop selective HDAC inhibitors. This paper focuses on the recent research progresses of HDAC proteins and their inhibitors on the roles of the treatment for AD.


References

Green, K. N., J. S. Steffan, et al. (2008). "Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau." J Neurosci 28(45): 11500-10. [PMID: 18987186]

Grissom, N. M. and F. D. Lubin (2009). "The dynamics of HDAC activity on memory formation." Cellscience 6(1): 44-48. [PMID: 19777123]

Guan, J. S., S. J. Haggarty, et al. (2009). "HDAC2 negatively regulates memory formation and synaptic plasticity." Nature 459(7243): 55-60. [PMID: 19424149]

Jung-Hynes, B., R. J. Reiter, et al. (2010). "Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer." J Pineal Res 48(1): 9-19. [PMID: 20025641]

Morris, M. J., M. Mahgoub, et al. (2013). "Loss of histone deacetylase 2 improves working memory and accelerates extinction learning." J Neurosci 33(15): 6401-11. [PMID: 23575838]

Xu, K., X. L. Dai, et al. (2011). "Targeting HDACs: a promising therapy for Alzheimer's disease." Oxid Med Cell Longev 2011: 143269. [PMID: 21941604]