GMO Abstracts 2

©

Clinical and laboratory investigation of allergy to genetically modified foods

         (Bernstein, Bernstein et al. 2003) Download

Technology has improved the food supply since the first cultivation of crops. Genetic engineering facilitates the transfer of genes among organisms. Generally, only minute amounts of a specific protein need to be expressed to obtain the desired trait. Food allergy affects only individuals with an abnormal immunologic response to food--6% of children and 1.5-2% of adults in the United States. Not all diseases caused by food allergy are mediated by IgE. A number of expert committees have advised the U.S. government and international organizations on risk assessment for allergenicity of food proteins. These committees have created decision trees largely based on assessment of IgE-mediated food allergenicity. Difficulties include the limited availability of allergen-specific IgE antisera from allergic persons as validated source material, the utility of specific IgE assays, limited characterization of food proteins, cross-reactivity between food and other allergens, and modifications of food proteins by processing. StarLink was a corn variety modified to produce a (Italic)Bacillus thuringiensis(/Italic) (Bt) endotoxin, Cry9C. The Centers for Disease Control and Prevention investigated 51 reports of possible adverse reactions to corn that occurred after the announcement that StarLink, allowed for animal feed, was found in the human food supply. Allergic reactions were not confirmed, but tools for postmarket assessment were limited. Workers in agricultural and food preparation facilities have potential inhalation exposure to plant dusts and flours. In 1999, researchers found that migrant health workers can become sensitized to certain Bt spore extracts after exposure to Bt spraying.


Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup((R))

         (Jasper, Locatelli et al. 2012) Download

We evaluated the toxicity of hepatic, hematological, and oxidative effects of glyphosate-Roundup((R)) on male and female albino Swiss mice. The animals were treated orally with either 50 or 500 mg/kg body weight of the herbicide, on a daily basis for a period of 15 days. Distilled water was used as control treatment. Samples of blood and hepatic tissue were collected at the end of the treatment. Hepatotoxicity was monitored by quantitative analysis of the serum enzymes ALT, AST, and gamma-GT and renal toxicity by urea and creatinine. We also investigated liver tissues histopathologically. Alterations of hematological parameters were monitored by RBC, WBC, hemoglobin, hematocrit, MCV, MCH, and MCHC. TBARS (thiobarbituric acid reactive substances) and NPSH (non-protein thiols) were analyzed in the liver to assess oxidative damage. Significant increases in the levels of hepatic enzymes (ALT, AST, and gamma-GT) were observed for both herbicide treatments, but no considerable differences were found by histological analysis. The hematological parameters showed significant alterations (500 mg/kg body weight) with reductions of RBC, hematocrit, and hemoglobin, together with a significant increase of MCV, in both sexes of mice. In males, there was an important increase in lipid peroxidation at both dosage levels, together with an NPSH decrease in the hepatic tissue, whereas in females significant changes in these parameters were observed only at the higher dose rate. The results of this study indicate that glyphosate-Roundup((R)) can promote hematological and hepatic alterations, even at subacute exposure, which could be related to the induction of reactive oxygen species.

A closer look at GE corn findings

         (Nicole 2012) Download


Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety

         (Panda, Ariyarathna et al. 2013) Download

Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop.

New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity

         (Seralini, Cellier et al. 2007) Download

Health risk assessment of genetically modified organisms (GMOs) cultivated for food or feed is under debate throughout the world, and very little data have been published on mid- or long-term toxicological studies with mammals. One of these studies performed under the responsibility of Monsanto Company with a transgenic corn MON863 has been subjected to questions from regulatory reviewers in Europe, where it was finally approved in 2005. This necessitated a new assessment of kidney pathological findings, and the results remained controversial. An Appeal Court action in Germany (Munster) allowed public access in June 2005 to all the crude data from this 90-day rat-feeding study. We independently re-analyzed these data. Appropriate statistics were added, such as a multivariate analysis of the growth curves, and for biochemical parameters comparisons between GMO-treated rats and the controls fed with an equivalent normal diet, and separately with six reference diets with different compositions. We observed that after the consumption of MON863, rats showed slight but dose-related significant variations in growth for both sexes, resulting in 3.3% decrease in weight for males and 3.7% increase for females. Chemistry measurements reveal signs of hepatorenal toxicity, marked also by differential sensitivities in males and females. Triglycerides increased by 24-40% in females (either at week 14, dose 11% or at week 5, dose 33%, respectively); urine phosphorus and sodium excretions diminished in males by 31-35% (week 14, dose 33%) for the most important results significantly linked to the treatment in comparison to seven diets tested. Longer experiments are essential in order to indicate the real nature and extent of the possible pathology; with the present data it cannot be concluded that GM corn MON863 is a safe product.


References

Bernstein, J. A., I. L. Bernstein, et al. (2003). "Clinical and laboratory investigation of allergy to genetically modified foods." Environ Health Perspect 111(8): 1114-21. [PMID: 12826483]

Jasper, R., G. O. Locatelli, et al. (2012). "Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup((R))." Interdiscip Toxicol 5(3): 133-40. [PMID: 23554553]

Nicole, W. (2012). "A closer look at GE corn findings." Environ Health Perspect 120(11): A421. [PMID: 23117056]

Panda, R., H. Ariyarathna, et al. (2013). "Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety." Allergy 68(2): 142-51. [PMID: 23205714]

Seralini, G. E., D. Cellier, et al. (2007). "New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity." Arch Environ Contam Toxicol 52(4): 596-602. [PMID: 17356802]