Estradiol Hydroxylation Ratio Abstracts 2

©

Specificity determinants of CYP1B1 estradiol hydroxylation.
            (Nishida et al., 2013) Download
Cytochrome P450 (P450)-catalyzed oxidation of the aromatic ring of estradiol can result in 2- or 4-hydroxylation. Which of these products is formed is biologically important, as the 4-hydroxylated metabolite is carcinogenic, whereas the 2-hydroxylated metabolite is not. Most human P450 enzymes, including CYP1A1 and CYP1A2, exhibit a high preference for estradiol 2-hydroxylation, but human CYP1B1 greatly favors 4-hydroxylation. Here we show that heterologous expression of the human, monkey, dog, rat, and mouse CYP1B1 enzymes yields active proteins that differ in their estradiol hydroxylation specificity. The monkey and dog orthologs, like the human enzyme, preferentially catalyze 4-hydroxylation, but the rat and mouse enzymes favor 2-hydroxylation. Analysis of the CYP1B1 sequences in light of these findings suggested that one residue, Val395 in human CYP1B1, could account for the differential hydroxylation specificities. In fact, mutation of this valine in human CYP1B1 to the leucine present in the rat enzyme produces a human enzyme that has the 2-hydroxylation specificity of the rat enzyme. The converse is true when the leucine in the rat enzyme is mutated to the human valine. The role of CYP1B1 in estradiol carcinogenicity thus depends on the identity of this single amino acid residue.

St. John's wort extracts and some of their constituents potently inhibit ultimate carcinogen formation from benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1.
            (Schwarz et al., 2003) Download
Commercially available St. John's wort (Hypericum perforatum) preparations and some of their main constituents (hypericin, pseudohypericin, hyperforin, rutin, and quercetin) were examined for their potential to inhibit carcinogen activation by human cytochrome P450 1A1 (CYP1A1). We used a reconstituted system consisting of purified human CYP1A1, purified human NADPH-cytochrome P450 reductase, and dilaurylphosphatidylcholine as lipid component. St. John's wort extracts potently inhibited CYP1A1-catalyzed (+/-)-trans-7,8-dihydro-7,8-dihydroxy-benzo(a)pyrene (7,8-diol-B[a]P) epoxidation, the terminal reaction leading to the ultimate carcinogenic product (+/-)-B[a]P-r-7,t-8-dihydrodiol-t-9,10-epoxide (diolepoxide 2). All constituents, except rutin, were shown to possess strong inhibitory potencies toward diolepoxide 2 formation from 7,8-diol-B[a]P, with IC(50) values of 0.5 microM (hypericin), 1.2 microM (hyperforin), 1.5 microM (quercetin), and 8 microM (pseudohypericin), respectively. Preincubation experiments revealed that their action was not mechanism based. Inhibition kinetics studies showed the anthrodianthrone compound hypericin to be a noncompetitive inhibitor, with a K(i) value of 0.6 microM, and the phloroglucinol hyperforin to be a competitive inhibitor, with a K(i) value of 1.1 microM. When the effects on NADPH-P450 reductase activity were investigated, all constituents of St. John's wort studied turned out to be rather ineffective inhibitors; quercetin was the only exception, with an IC(50) value of approximately 20 microM. These in vitro data indicate that St. John's wort extracts and some of their constituents potently inhibit the major human procarcinogen-activating enzyme CYP1A1.

CYP1A1 genotype-selective inhibition of benzo[a]pyrene activation by quercetin.
            (Schwarz et al., 2005) Download
Epidemiological studies suggest that food rich in quercetin and naringin may protect against certain types of lung cancer, and that genotype dependent inhibition of cytochrome P450 1A1 (CYP1A1)-mediated bioactivation of procarcinogens could be the underlying mechanism. We studied the inhibitory effects of quercetin and naringin on the terminal bioactivation step of benzo[a]pyrene (B[a]P), a member of the major class of lung carcinogens. This reaction (epoxidation of (+/-)-trans-7,8-dihydro-7,8-dihydroxy-B[a]P to the ultimate carcinogenic product, (+/-)-B[a]P-r-7,t-8-dihydrodiol-t-9,10-epoxide (diolepoxide 2)) was examined using three of the most common allelic variants of human CYP1A1, namely wild-type CYP1A1.1, CYP1A1.2, and CYP1A1.4. Quercetin potently inhibited diolepoxide 2 formation by all CYP1A1 types with IC(50) values between 1.6 and 7.0 microM. The differences between the wild-type enzyme and the variants were statistically highly significant (P < 0.01). Enzyme kinetics revealed quercetin as a mixed-type inhibitor of CYP1A1.1, CYP1A1.2, and CYP1A1.4 with K(i) values of 2.0, 6.4, and 9.3 microM, respectively. Naringin inhibited diolepoxide 2 formation only slightly. Our data support the hypothesis that quercetin may have a stronger chemopreventive effect in individuals carrying wild-type compared with variant CYP1A1 genes. Future studies should consider the influence of P450 polymorphisms on both procarcinogen activation and its inhibition to facilitate the development of genotype-specific chemoprevention regimes.

 

Inhibition of 17β-estradiol activation by CYP1A1: genotype- and regioselective inhibition by St. John's Wort and several natural polyphenols.
            (Schwarz et al., 2011) Download
Several epidemiological studies associate certain CYP1A1 genotypes, alone or in combination, with an increased risk of estrogen-related cancers. Previously we demonstrated that metabolic activation of estrogens by CYP1A1 is a genotype-dependent reaction with the CYP1A1.2 (Ile462Val) variant being the most efficient catalyst (Kisselev et al.). To answer the question whether genotype-dependent inhibition of activation of estrogens by CYP1A1 could also contribute, we studied the inhibition of hydroxylation activity of the most common allelic variants of human CYP1A1 towards 17β-estradiol. We expressed and purified CYP1A1.1 (wild-type), CYP1A1.2 (Ile462Val), and CYP1A1.4 (Thr461Asn) and performed inhibition assays by natural polyphenols of our diet and drugs of NADPH-dependent estradiol hydroxylation in reconstituted CYP1A1 systems. From the polyphenols studied, a St. John's Wort (Hypericum perforatum) extract, some of its main single constituents hypericin, pseudohypericin, and quercetin, as well as the flavonols kaempferol, myricetin and the phytoestrogens resveratrol and tetramethyl-stilbene exhibited strong inhibition. For the St. John's Wort extract and its single constituents hypericin, pseudohypericin, and quercetin, inhibition exhibited a remarkable dependency on the CYP1A1 genotype. Whereas (wild-type) CYP1A1.1 was most inhibited by the whole crude extract, the variant CYP1A1.2 (Ile462Val) was significantly stronger inhibited by the constituents in its pure form: IC₅₀ values for 2-hydroxylation was more than two times lower compared with the wild-type enzyme and the variant CYP1A1.4 (Thr461Asn). Besides this, the inhibition exhibited a remarkable regioselectivity. The data suggest that risk of estrogen-mediated diseases might be not only influenced by CYP1A1 genotype-dependent activation but also its inhibition by natural polyphenols of our diet and drugs.

 


References

Nishida, CR, S Everett, and PR Ortiz de Montellano (2013), ‘Specificity determinants of CYP1B1 estradiol hydroxylation.’, Mol Pharmacol, 84 (3), 451-58. PubMed: 23821647
Schwarz, D, P Kisselev, and I Roots (2003), ‘St. John’s wort extracts and some of their constituents potently inhibit ultimate carcinogen formation from benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1.’, Cancer Res, 63 (22), 8062-68. PubMed: 14633740
——— (2005), ‘CYP1A1 genotype-selective inhibition of benzo[a]pyrene activation by quercetin.’, Eur J Cancer, 41 (1), 151-58. PubMed: 15618000
Schwarz, D, et al. (2011), ‘Inhibition of 17β-estradiol activation by CYP1A1: genotype- and regioselective inhibition by St. John’s Wort and several natural polyphenols.’, Biochim Biophys Acta, 1814 (1), 168-74. PubMed: 20883830