Berberine Abstracts 10

©

Calorie restriction: is AMPK a key sensor and effector?
(Canto and Auwerx, 2011)  Download
Dietary restriction can extend life span in most organisms tested to date, suggesting that mechanisms sensing nutrient and energy availability might regulate longevity. The AMP-activated protein kinase (AMPK) has emerged as a key energy sensor with the ability to transcriptionally reprogram the cell and metabolically adapt to external cues. In this review, we will discuss the possible role of AMPK in the beneficial effects of calorie restriction on health and life span.

AMPK and insulin action--responses to ageing and high fat diet.
            (Frosig et al., 2013) Download
The 5'-AMP-activated protein kinase (AMPK) is considered "a metabolic master-switch" in skeletal muscle reducing ATP- consuming processes whilst stimulating ATP regeneration. Within recent years, AMPK has also been proposed as a potential target to attenuate insulin resistance, although the exact role of AMPK is not well understood. Here we hypothesized that mice lacking alpha2AMPK activity in muscle would be more susceptible to develop insulin resistance associated with ageing alone or in combination with high fat diet. Young ( approximately 4 month) or old ( approximately 18 month) wild type and muscle specific alpha2AMPK kinase-dead mice on chow diet as well as old mice on 17 weeks of high fat diet were studied for whole body glucose homeostasis (OGTT, ITT and HOMA-IR), insulin signaling and insulin-stimulated glucose uptake in muscle. We demonstrate that high fat diet in old mice results in impaired glucose homeostasis and insulin stimulated glucose uptake in both the soleus and extensor digitorum longus muscle, coinciding with reduced insulin signaling at the level of Akt (pSer473 and pThr308), TBC1D1 (pThr590) and TBC1D4 (pThr642). In contrast to our hypothesis, the impact of ageing and high fat diet on insulin action was not worsened in mice lacking functional alpha2AMPK in muscle. It is concluded that alpha2AMPK deficiency in mouse skeletal muscle does not cause muscle insulin resistance in young and old mice and does not exacerbate obesity-induced insulin resistance in old mice suggesting that decreased alpha2AMPK activity does not increase susceptibility for insulin resistance in skeletal muscle.


 

Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth.
            (Fu et al., 2013) Download
Berberine (BBR), an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC) cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and colony formation, and induced cell apoptosis. Further molecular mechanism study showed that BBR simultaneously targeted multiple cell signaling pathways to inhibit NSCLC cell growth. Treatment with BBR inhibited AP-2α and AP-2β expression and abrogated their binding on hTERT promoters, thereby inhibiting hTERT expression. Knockdown of AP-2α and AP-2β by siRNA considerably augmented the BBR-mediated inhibition of cell growth. BBR also suppressed the nuclear translocation of p50/p65 NF-κB proteins and their binding to COX-2 promoter, causing inhibition of COX-2. BBR also downregulated HIF-1α and VEGF expression and inhibited Akt and ERK phosphorylation. Knockdown of HIF-1α by siRNA considerably augmented the BBR-mediated inhibition of cell growth. Moreover, BBR treatment triggered cytochrome-c release from mitochondrial inter-membrane space into cytosol, promoted cleavage of caspase and PARP, and affected expression of BAX and Bcl-2, thereby activating apoptotic pathway. Taken together, these results demonstrated that BBR inhibited NSCLC cell growth by simultaneously targeting AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF, PI3K/AKT, Raf/MEK/ERK and cytochrome-c/caspase signaling pathways. Our findings provide new insights into understanding the anticancer mechanisms of BBR in human lung cancer therapy.

Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury.
            (Kysenius et al., 2014) Download
The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer's disease, is on the rise. In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the safety profile of berberine remains controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine, especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of increasing bioavailability of berberine.

The effects of berberine on a murine model of multiple sclerosis and the SPHK1/S1P signaling pathway.
            (Luo et al., 2017) Download
Berberine (BBR) has shown neuroprotective properties. The present study aims to investigate the effects of BBR on experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), and SphK1/S1P signaling, which plays a key role in MS. EAE was induced in mice, followed by treatment with BBR at 50, 100, or 300 mg/kg/d. Neurophysiological function was evaluated daily; inflammation, cell infiltration, and the severity of demyelination were also examined. The SphK1, SphK2, and S1P levels in the animals and primary astrocyte culture were measured. We found that treatment with BBR reduced the loss of neurophysiological function and the degree of demyelination. Moreover, BBR was associated with a decrease in SphK1 and S1P levels both in the animals and in culture. These results indicated that BBR suppresses demyelination and loss of neurophysiological function by inhibiting the SphK1/S1P signaling pathway. The use of BBR as a treatment of MS warrant further exploration.

Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: a review.
            (Rad et al., 2017) Download
Berberis vulgaris and berberine, its main component, traditionally have been used for treatment of various disorders. The pharmacological properties of them have been investigated using different in vivo and in vitro models. In spite of beneficial effects of B. vulgaris on different cell lines, there are documents have revealed negative impacts of it on animal and human. In this regards, the determination of its toxicity in a scientific view is necessary. In current report, we provide classified information about the toxicity of B. vulgaris and berberine in different conditions consist of acute, sub-acute, sub-chronic and chronic state. Besides, it discusses the cytotoxicity, genotoxicity, mutagenicity, and carcinogenicity of B. vulgaris and berberine as well as developmental toxicity and clinical studies. Data from the present study indicate that their toxicity is depending on the route and duration of administration. According to present study, they could induce GI upset and ulceration, immunotoxicity, phototoxicity, neurotoxicity, cardiotoxicity and jaundice in a dose dependent manner. They should be used with caution in pregnancy, neonatal and G6PD deficiency. Besides, consideration should be taken in co-administration of berberine with drugs that are metabolized with CYP enzymes due their inhibitory effects on these enzymes. Furthermore, they evoke cytotoxicity on both normal and cancer cell line which is time and concentration dependent.

AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network.
            (Salminen and Kaarniranta, 2012) Download
Efficient control of energy metabolic homeostasis, enhanced stress resistance, and qualified cellular housekeeping are the hallmarks of improved healthspan and extended lifespan. AMPK signaling is involved in the regulation of all these characteristics via an integrated signaling network. Many studies with lower organisms have revealed that increased AMPK activity can extend the lifespan. Experiments in mammals have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling which augment the quality of cellular housekeeping. Moreover, AMPK-induced stimulation of FoxO/DAF-16, Nrf2/SKN-1, and SIRT1 signaling pathways improves cellular stress resistance. Furthermore, inhibition of NF-kappaB signaling by AMPK suppresses inflammatory responses. Emerging studies indicate that the responsiveness of AMPK signaling clearly declines with aging. The loss of sensitivity of AMPK activation to cellular stress impairs metabolic regulation, increases oxidative stress and reduces autophagic clearance. These age-related changes activate innate immunity defence, triggering a low-grade inflammation and metabolic disorders. We will review in detail the signaling pathways of this integrated network through which AMPK controls energy metabolism, autophagic degradation and stress resistance and ultimately the aging process.

Learning from berberine: Treating chronic diseases through multiple targets.
            (Yao et al., 2015) Download
Although advances have been made, chemotherapy for chronic, multifactorial diseases such as cancers, Alzheimer's disease, cardiovascular diseases and diabetes is far from satisfactory. Agents with different mechanisms of action are required. The botanic compound berberine (BBR) has been used as an over-the-counter antibacterial for diarrhea in China for many decades. Recent clinical studies have shown that BBR may be therapeutic in various types of chronic diseases. This review addresses BBR's molecular mechanisms of action and clinical efficacy and safety in patients with type 2 diabetes, hyperlipidemia, heart diseases, cancers and inflammation. One of the advantages of BBR is its multiple-target effects in each of these diseases. The therapeutic efficacy of BBR may reflect a synergistic regulation of these targets, resulting in a comprehensive effect against these various chronic disorders. The safety of BBR may be due to its harmonious distribution into those targets. Although the single-target concept is still the principle for drug discovery and research, this review emphasizes the concept of a multiple target strategy, which may be an important approach toward the successful treatment of multifactorial chronic diseases.

Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis.
            (Zhao et al., 2016) Download
Berberine (BBR) is an isoquinoline alkaloid extracted from medicinal plants such as Hydrastis canadensis, Berberis aristata and Coptis chinensis. BBR displays a number of beneficial roles in the treatment of various types of cancers, yet the precise mechanisms of its action remain unclear. Cisplatin is an effective cancer chemotherapeutic agent and functions by generating DNA damage, promoting DNA damage-induced cell cycle arrest and apoptosis; however, its efficacy is challenged by the resistance of tumor cells in clinical application. The aim of the present study was to investigate the effects of BBR in combination with cisplatin on human breast cancer cells. MTT assay showed that BBR inhibited breast cancer MCF-7 cell growth with a 50% inhibitory concentration (IC50) value of 52.178±1.593 µM and the IC50 value of cisplatin was 49.541±1.618 µM, while in combination with 26 µM BBR, the IC50 value of cisplatin was 5.759±0.76 µM. BBR sensitized the MCF-7 cells to cisplatin in a time- and dose-dependent manner. After treatment of BBR and cisplatin, the cellular pro-apoptotic capase-3 and cleaved capspase-3 and caspase-9 were upregulated and the anti-apoptotic Bcl-2 was downregulated. Importantly, BBR restrained the expression of cellular PCNA, and immunofluoresence analysis of γH2AX showed that BBR increased the DNA damages induced by cisplatin. Taken together, the results demonstrated that BBR sensitized MCF-7 cells to cisplatin through induction of DNA breaks and caspase-3-dependent apoptosis.

 


References

Canto, C and J Auwerx (2011), ‘Calorie restriction: is AMPK a key sensor and effector?’, Physiology (Bethesda), 26 (4), 214-24. PubMed: 21841070
Frosig, C, et al. (2013), ‘AMPK and insulin action--responses to ageing and high fat diet.’, PLoS One, 8 (5), e62338. PubMed: 23671593
Fu, L, et al. (2013), ‘Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth.’, PLoS One, 8 (7), e69240. PubMed: 23869238
Kysenius, K, CA Brunello, and HJ Huttunen (2014), ‘Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury.’, PLoS One, 9 e107129. PubMed: 25192195
Luo, J, et al. (2017), ‘The effects of berberine on a murine model of multiple sclerosis and the SPHK1/S1P signaling pathway.’, Biochem Biophys Res Commun, 490 (3), 927-32. PubMed: 28655617
Rad, SZK, M Rameshrad, and H Hosseinzadeh (2017), ‘Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: a review.’, Iran J Basic Med Sci, 20 (5), 516-29. PubMed: 28656087
Salminen, A and K Kaarniranta (2012), ‘AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network.’, Ageing Res Rev, 11 (2), 230-41. PubMed: 22186033
Yao, J, W Kong, and J Jiang (2015), ‘Learning from berberine: Treating chronic diseases through multiple targets.’, Sci China Life Sci, 58 (9), 854-59. PubMed: 24174332
Zhao, Y, et al. (2016), ‘Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis.’, Oncol Rep, 36 (1), 567-72. PubMed: 27177238