Ashwagandha Articles 3

©

Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-proliferative Effects of Dietary Flavonoid-'Ashwagandha' in Prostate Cancer Cells
            (Aalinkeel et al., 2010) Download
Phytochemicals are dietary phytoestrogens that may play a role in prostate cancer prevention. Forty percent of Americans use complementary and alternative medicines (CAM) for disease prevention and therapy. Ashwagandha (Withania somnifera) contains flavonoids and active ingredients like alkaloids and steroidal lactones which are called 'Withanolides'. We hypothesize that the immunomodulatory and anti-inflammatory properties of Ashwagandha might contribute to its overall effectiveness as an anti-carcinogenic agent. The goal of our study was gain insight into the general biological and molecular functions and immunomodulatory processes that are altered as a result of Ashwagandha treatment in prostate cancer cells, and to identify the key signaling mechanisms that are involved in the regulation of these physiological effects using genomic microarray analysis in conjunction with quantitative real-time PCR and western blot analysis. Ashwagandha treatment significantly downregulated the gene and protein expression of proinflammatory cytokines IL-6, IL-1beta, chemokine IL-8, Hsp70 and STAT-2, while a reciprocal upregulation was observed in gene and protein expression of p38 MAPK, PI3K, caspase 6, Cyclin D and c-myc. Furthermore, Ashwagandha treatment significantly modulated the JAK-STAT pathway which regulates both the apoptosis process as well as the MAP kinase signaling. These studies outline several functionally important classes of genes, which are associated with immune response, signal transduction, cell signaling, transcriptional regulation, apoptosis and cell cycle regulation and provide insight into the molecular signaling mechanisms that are modulated by Ashwagandha, thereby highlighting the use of this bioflavanoid as effective chemopreventive agent relevant to prostate cancer progression.

Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression
            (Ichikawa et al., 2006) Download
The plant Withania somnifera Dunal (Ashwagandha), also known as Indian ginseng, is widely used in the Ayurvedic system of medicine to treat tumors, inflammation, arthritis, asthma, and hypertension. Chemical investigation of the roots and leaves of this plant has yielded bioactive withanolides. Earlier studies showed that withanolides inhibit cyclooxygenase enzymes, lipid peroxidation, and proliferation of tumor cells. Because several genes that regulate cellular proliferation, carcinogenesis, metastasis, and inflammation are regulated by activation of nuclear factor-kappaB (NF-kappaB), we hypothesized that the activity of withanolides is mediated through modulation of NF-kappaB activation. For this report, we investigated the effect of the withanolide on NF-kappaB and NF-kappaB-regulated gene expression activated by various carcinogens. We found that withanolides suppressed NF-kappaB activation induced by a variety of inflammatory and carcinogenic agents, including tumor necrosis factor (TNF), interleukin-1beta, doxorubicin, and cigarette smoke condensate. Suppression was not cell type specific, as both inducible and constitutive NF-kappaB activation was blocked by withanolides. The suppression occurred through the inhibition of inhibitory subunit of IkappaB alpha kinase activation, IkappaB alpha phosphorylation, IkappaB alpha degradation, p65 phosphorylation, and subsequent p65 nuclear translocation. NF-kappaB-dependent reporter gene expression activated by TNF, TNF receptor (TNFR) 1, TNFR-associated death domain, TNFR-associated factor 2, and IkappaB alpha kinase was also suppressed. Consequently, withanolide suppressed the expression of TNF-induced NF-kappaB-regulated antiapoptotic (inhibitor of apoptosis protein 1, Bfl-1/A1, and FADD-like interleukin-1beta-converting enzyme-inhibitory protein) and metastatic (cyclooxygenase-2 and intercellular adhesion molecule-1) gene products, enhanced the apoptosis induced by TNF and chemotherapeutic agents, and suppressed cellular TNF-induced invasion and receptor activator of NF-kappaB ligand-induced osteoclastogenesis. Overall, our results indicate that withanolides inhibit activation of NF-kappaB and NF-kappaB-regulated gene expression, which may explain the ability of withanolides to enhance apoptosis and inhibit invasion and osteoclastogenesis.

Withaferin A is a potent inhibitor of angiogenesis
            (Mohan et al., 2004) Download
The medicinal plant Withania somnifera is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In Ayurveda , the major Traditional Indian medicine system, extracts from W. somnifera are distinctively employed for the treatment of arthritis and menstrual disorders. Because these conditions involve angiogenic processes we hypothesized that the W. somnifera extracts might contain angiogenesis inhibitors. We employed an endothelial cell-sprouting assay to monitor the purification of substances from W. somnifera root extracts and isolated as the active principle the previously known natural product withaferin A. We show that withaferin A inhibits human umbilical vein endothelial cell (HUVEC) sprouting in three-dimensional collagen-I matrix at doses which are relevant to NF-kappa B-inhibitory activity. Withaferin A inhibits cell proliferation in HUVECs (IC50 =12 nM) at doses that are significantly lower than those required for tumor cell lines through a process associated with inhibition of cyclin D1 expression. We propose that the inhibition of NF-kappa B by withaferin A in HUVECs occurs by interference with the ubiquitin-mediated proteasome pathway as suggested by the increased levels of poly-ubiquitinated proteins. Finally, withaferin A is shown to exert potent anti-angiogenic activity in vivo at doses that are 500-fold lower than those previously reported to exert anti-tumor activity in vivo. In conclusion, our findings identify a novel mode of action of withaferin A, which highlights the potential use of this natural product for cancer treatment or prevention.

Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation
            (Shah et al., 2009) Download
Ashwagandha (Withania somnifera) is widely used in the Indian traditional system of medicine, Ayurveda. Although it is claimed to have a large variety of health-promoting effects, including therapeutic effects on stress and disease, the mechanisms of action have not yet been determined. In the present study, we aimed to investigate the growth inhibition and differentiation potential of the alcoholic extract of Ashwagandha leaves (i-Extract), its different constituents (Withaferin A, Withanone, Withanolide A) and their combinations on glioma (C6 and YKG1) cell lines. Withaferin A, Withanone, Withanolide A and i-Extract markedly inhibited the proliferation of glioma cells in a dose-dependent manner and changed their morphology toward the astrocytic type. Molecular analysis revealed that the i-Extract and some of its components caused enhanced expression of glial fibrillary acidic protein, change in the immunostaining pattern of mortalin from perinuclear to pancytoplasmic, delay in cell migration, and increased expression of neuronal cell adhesion molecules. The data suggest that the i-Extract and its components have the potential to induce senescence-like growth arrest and differentiation in glioma cells. These assays led us to formulate a unique combination formula of i-Extract components that caused enhanced differentiation of glial cells.

Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells
            (Stan et al., 2008a) Download
Withaferin A (WA) is derived from the medicinal plant Withania somnifera that has been safely used for centuries in the Indian Ayurvedic medicine for treatment of various ailments. We now demonstrate that WA treatment causes G2 and mitotic arrest in human breast cancer cells. Treatment of MDA-MB-231 (estrogen-independent) and MCF-7 (estrogen-responsive) cell lines with WA resulted in a concentration- and time-dependent increase in G2-M fraction, which correlated with a decrease in levels of cyclin-dependent kinase 1 (Cdk1), cell division cycle 25C (Cdc25C) and/or Cdc25B proteins, leading to accumulation of Tyrosine15 phosphorylated (inactive) Cdk1. Ectopic expression of Cdc25C conferred partial yet significant protection against WA-mediated G2-M phase cell cycle arrest in MDA-MB-231 cells. The WA-treated MDA-MB-231 and MCF-7 cells were also arrested in mitosis as judged by fluorescence microscopy and analysis of Ser10 phosphorylated histone H3. Mitotic arrest resulting from exposure to WA was accompanied by an increase in the protein level of anaphase promoting complex/cyclosome substrate securin. In conclusion, the results of this study suggest that G2-M phase cell cycle arrest may be an important mechanism in antiproliferative effect of WA against human breast cancer cells.

Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo
            (Stan et al., 2008b) Download
Withaferin A (WA) is derived from the medicinal plant Withania somnifera, which has been safely used for centuries in Indian Ayurvedic medicine for treatment of different ailments. We now show, for the first time, that WA exhibits significant activity against human breast cancer cells in culture and in vivo. The WA treatment decreased viability of MCF-7 (estrogen-responsive) and MDA-MB-231 (estrogen-independent) human breast cancer cells in a concentration-dependent manner. The WA-mediated suppression of breast cancer cell viability correlated with apoptosis induction characterized by DNA condensation, cytoplasmic histone-associated DNA fragmentation, and cleavage of poly-(ADP-ribose)-polymerase. On the other hand, a spontaneously immortalized normal mammary epithelial cell line (MCF-10A) was relatively more resistant to WA-induced apoptosis compared with breast cancer cells. The WA-mediated apoptosis was accompanied by induction of Bim-s and Bim-L in MCF-7 cells and induction of Bim-s and Bim-EL isoforms in MDA-MB-231 cells. The cytoplasmic histone-associated DNA fragmentation resulting from WA exposure was significantly attenuated by knockdown of protein levels of Bim and its transcriptional regulator FOXO3a in both cell lines. Moreover, FOXO3a knockdown conferred marked protection against WA-mediated induction of Bim-s expression. The growth of MDA-MB-231 cells implanted in female nude mice was significantly retarded by 5 weekly i.p. injections of 4 mg WA/kg body weight. The tumors from WA-treated mice exhibited reduced cell proliferation and increased apoptosis compared with tumors from control mice. These results point toward an important role of FOXO3a and Bim in regulation of WA-mediated apoptosis in human breast cancer cells.

Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect
            (Widodo et al., 2007) Download
PURPOSE: Ashwagandha is regarded as a wonder shrub of India and is commonly used in Ayurvedic medicine and health tonics that claim its variety of health-promoting effects. Surprisingly, these claims are not well supported by adequate studies, and the molecular mechanisms of its action remain largely unexplored to date. We undertook a study to identify and characterize the antitumor activity of the leaf extract of ashwagandha. EXPERIMENTAL DESIGN: Selective tumor-inhibitory activity of the leaf extract (i-Extract) was identified by in vivo tumor formation assays in nude mice and by in vitro growth assays of normal and human transformed cells. To investigate the cellular targets of i-Extract, we adopted a gene silencing approach using a selected small hairpin RNA library and found that p53 is required for the killing activity of i-Extract. RESULTS: By molecular analysis of p53 function in normal and a variety of tumor cells, we found that it is selectively activated in tumor cells, causing either their growth arrest or apoptosis. By fractionation, purification, and structural analysis of the i-Extract constituents, we have identified its p53-activating tumor-inhibiting factor as with a none. CONCLUSION: We provide the first molecular evidence that the leaf extract of ashwagandha selectively kills tumor cells and, thus, is a natural source for safe anticancer medicine.

Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling
         (Widodo et al., 2010) Download
BACKGROUND AND PURPOSE: Ashwagandha is a popular Ayurvedic herb used in Indian traditional home medicine. It has been assigned a variety of health-promoting effects of which the mechanisms remain unknown. We previously reported the selective killing of cancer cells by leaf extract of Ashwagandha (i-Extract) and its purified component Withanone. In the present study, we investigated its mechanism by loss-of-function screening (abrogation of i-Extract induced cancer cell killing) of the cellular targets and gene pathways. METHODOLOGY/PRINCIPAL FINDINGS: Randomized ribozyme library was introduced into cancer cells prior to the treatment with i-Extract. Ribozymes were recovered from cells that survived the i-Extract treatment. Gene targets of the selected ribozymes (as predicted by database search) were analyzed by bioinformatics and pathway analyses. The targets were validated for their role in i-Extract induced selective killing of cancer cells by biochemical and molecular assays. Fifteen gene-targets were identified and were investigated for their role in specific cancer cell killing activity of i-Extract and its two major components (Withaferin A and Withanone) by undertaking the shRNA-mediated gene silencing approach. Bioinformatics on the selected gene-targets revealed the involvement of p53, apoptosis and insulin/IGF signaling pathways linked to the ROS signaling. We examined the involvement of ROS-signaling components (ROS levels, DNA damage, mitochondrial structure and membrane potential) and demonstrate that the selective killing of cancer cells is mediated by induction of oxidative stress. CONCLUSION: Ashwagandha leaf extract and Withanone cause selective killing of cancer cells by induction of ROS-signaling and hence are potential reagents that could be recruited for ROS-mediated cancer chemotherapy.

Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology
            (Winters, 2006) Download
Withania somnifera Dunal, commonly known as ashwagandha, has been used for centuries in Ayurvedic medicine to increase longevity and vitality. Western research supports its polypharmaceutical use, confirming antioxidant, anti-inflammatory, immune-modulating, and antistress properties in the whole plant extract and several separate constituents. This article reviews the literature pertaining to Withania somnifera and its botanical constituents as antitumor agents and in conjunction with radiation and chemotherapy treatment. Following a search of MEDLINE and EBSCO databases, it can be concluded that Withania somnifera reduces tumor cell proliferation while increasing overall animal survival time. Furthermore, it has been shown to enhance the effectiveness of radiation therapy while potentially mitigating undesirable side effects. Withania somnifera also reduces the side effects of chemotherapeutic agents cyclophosphamide and paclitaxel without interfering with the tumor-reducing actions of the drugs. These effects have been demonstrated in vitro on human cancer cell lines, and in vivo on animal subjects, but there have been no human trials to date. Given its broad spectrum of cytotoxic and tumor-sensitizing actions, Withania somnifera presents itself as a novel complementary therapy for integrative oncology care.

 


References

Aalinkeel, R., et al. (2010), ‘Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-proliferative Effects of Dietary Flavonoid-’Ashwagandha’ in Prostate Cancer Cells’, Evid Based Complement Alternat Med, 7 (2), 177-87. PubMedID: 18955307
Ichikawa, H., et al. (2006), ‘Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression’, Mol Cancer Ther, 5 (6), 1434-45. PubMedID: 16818501
Mohan, R., et al. (2004), ‘Withaferin A is a potent inhibitor of angiogenesis’, Angiogenesis, 7 (2), 115-22. PubMedID: 15516832
Shah, N., et al. (2009), ‘Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation’, Cancer Sci, 100 (9), 1740-47. PubMedID: 19575749
Stan, S. D., Y. Zeng, and S. V. Singh (2008a), ‘Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells’, Nutr Cancer, 60 Suppl 1 51-60. PubMedID: 19003581
Stan, S. D., et al. (2008b), ‘Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo’, Cancer Res, 68 (18), 7661-69. PubMedID: 18794155
Widodo, N., et al. (2007), ‘Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect’, Clin Cancer Res, 13 (7), 2298-306. PubMedID: 17404115
Widodo, N., et al. (2010), ‘Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling’, PLoS One, 5 (10), e13536. PubMedID: 20975835
Winters, M. (2006), ‘Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology’, Altern Med Rev, 11 (4), 269-77. PubMedID: 17176166