Ageing Abstracts 3

©

Neural effects of green tea extract on dorsolateral prefrontal cortex.
            (Borgwardt et al., 2012) Download
BACKGROUND/OBJECTIVES: Green tea is being recognized as a beverage with potential benefits for human health and cognitive functions. In vivo studies provide preliminary evidence that green tea intake may have a positive role in improving effects on cognitive functions. We aimed to examine the neural effects of green tea extract on brain activation in humans. SUBJECTS/METHODS: Functional magnetic resonance imaging was recorded while 12 healthy volunteers performed a working memory task following administration of 250 or 500 ml of a milk whey based green tea containing soft drink or milk whey based soft drink without green tea as control in a double-blind, controlled repeated measures within-subject design with counterbalanced order of substance administration. A whole-brain analysis with a cluster-level threshold of P<0.001 (unadjusted) was followed by an a priori-defined region of interest (ROI) analysis of the dorsolateral prefrontal cortex (DLPFC) including a cluster-level threshold of P<0.05 and family-wise error (FWE) adjustment for multiple comparisons. RESULTS: Whole-brain analyses revealed no significant effects after correction for multiple comparisons (FWE P<0.05). Using a ROI approach, green tea extract increased activation in the DLPFC relative to a control condition (FWE P<0.001). This neural effect was related to green tea dosage. Green tea extract was not associated with any significant attenuation in regional activation relative to control condition. CONCLUSIONS: These data suggest that green tea extract may modulate brain activity in the DLPFC, a key area that mediates working memory processing in the human brain. Moreover, this is the first neuroimaging study implicating that functional neuroimaging methods provide a means of examining how green tea extract acts on the brain.


 

Specific induction of glutathione S-transferase GSTM2 subunit expression by epigallocatechin gallate in rat liver.
            (Chou et al., 2000) Download
The antitumor effect of green tea polyphenols has been well characterized in numerous papers. However, the mechanism of their action is still poorly defined. In this study, epigallocatechin gallate (EGCG), the main ingredient of green tea extract, was studied for its effect on the expression of glutathione S-transferases (GSTs) in rat liver to examine the mechanism of action. Liver samples were collected from Sprague-Dawley rats treated with EGCG in H(2)O by portal vein perfusion and examined for total GST activity and GST expression. The results showed that the induction of GST activity by EGCG was dose- and time-dependent. GST activity was increased about 28-fold at 12 hr after treatment. Three GST subunits (GSTA1/2, GSTM1, and GSTM2) were examined by Western blot for changes in protein level affected by EGCG (1 mg/kg weight). Only GSTM2 revealed a significant time-dependent increase, with a maximal induction of approximately 2.0-fold. The differential effect of EGCG on GST subunit expression was also verified by immunocytochemical examination and showed strong induction of the GSTM2 (but not the GSTA1/2 and GSTM1) level in liver section. This induction occurred as early as 3 hr after treatment and extended gradually outward from the hepatic veins as treatment time increased. The change in the GSTM2 protein level was accompanied by a corresponding alteration in mRNA quantity ( approximately 2.0-fold of control). Our report is the first to demonstrate a specific induction of the GSTM2 subunit by a chemopreventor and suggests a primary influence of EGCG on GSTM2 gene expression.

Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway.
            (Mandel et al., 2005) Download
Many lines of evidence suggest that oxidative stress resulting in reactive oxygen species (ROS) generation and inflammation play a pivotal role in the age-associated cognitive decline and neuronal loss in neurodegenerative diseases including Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases. One cardinal chemical pathology observed in these disorders is the accumulation of iron at sites where the neurons die. The buildup of an iron gradient in conjunction with ROS (superoxide, hydroxyl radical and nitric oxide) are thought to constitute a major trigger in neuronal toxicity and demise in all these diseases. Thus, promising future treatment of neurodegenerative diseases and aging depends on availability of effective brain permeable, iron-chelatable/radical scavenger neuroprotective drugs that would prevent the progression of neurodegeneration. Tea flavonoids (catechins) have been reported to possess potent iron-chelating, radical-scavenging and anti-inflammatory activities and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. Recent studies have indicated that in addition to the known antioxidant activity of catechins, other mechanisms such as modulation of signal transduction pathways, cell survival/death genes and mitochondrial function, contribute significantly to the induction of cell viability. This review will focus on the multifunctional properties of green tea and its major component (-)-epigallocatechin-3-gallate (EGCG) and their ability to induce neuroprotection and neurorescue in vitro and in vivo. In particular, their transitional metal (iron and copper) chelating property and inhibition of oxidative stress.

Neural progenitors from human embryonic stem cells.
            (Reubinoff et al., 2001) Download
The derivation of neural progenitor cells from human embryonic stem (ES) cells is of value both in the study of early human neurogenesis and in the creation of an unlimited source of donor cells for neural transplantation therapy. Here we report the generation of enriched and expandable preparations of proliferating neural progenitors from human ES cells. The neural progenitors could differentiate in vitro into the three neural lineages--astrocytes, oligodendrocytes, and mature neurons. When human neural progenitors were transplanted into the ventricles of newborn mouse brains, they incorporated in large numbers into the host brain parenchyma, demonstrated widespread distribution, and differentiated into progeny of the three neural lineages. The transplanted cells migrated along established brain migratory tracks in the host brain and differentiated in a region-specific manner, indicating that they could respond to local cues and participate in the processes of host brain development. Our observations set the stage for future developments that may allow the use of human ES cells for the treatment of neurological disorders.

Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice.
            (Rezai-Zadeh et al., 2008) Download
We previously reported that intraperitoneal (i.p.) injection (20 mg/kg) of (-)-epigallocatechin-3-gallate (EGCG), the main polyphenolic constituent of green tea, decreased beta-amyloid (Abeta) levels and plaques via promotion of the non-amyloidogenic alpha-secretase proteolytic pathway in "Swedish" mutant amyloid precursor protein overexpressing (APPsw, Tg) mice. Here, we find that EGCG administered orally in drinking water (50 mg/kg) similarly reduces Abeta deposition in these mice. Following a six month treatment of an 8 month old cohort, immunohistochemical analysis of coronal sections reveals that plaque burdens were reduced in the cingulate cortex, hippocampus, and entorhinal cortex by 54%, 43%, and 51%, respectively. Congo red plaque burdens were decreased in the cingulate cortex, hippocampus, and entorhinal cortex by 53%, 53%, and 58%, respectively as well. ELISA of brain homogenates of the treatment Tg mice revealed consistent reductions in both Abeta1-40 and 1-42 soluble and insoluble forms. In the present study we also investigated the effect EGCG administration had on tau pathology and cognition in Tg mice. Both i.p. and orally-treated Tg animals were found to have modulated tau profiles, with markedly suppressed sarkosyl-soluble phosphorylated tau isoforms. Radial arm water maze (RAWM) testing for working memory indicated that EGCG provided cognitive benefit to Tg mice with both i.p. and oral administration, although i.p.-treated animals showed a more pronounced benefit because of the greater impairment of their Tg controls at the time of testing. Taken together, these data further the notion of EGCG dietary supplementation as a potentially safe and effective prophylaxis for Alzheimer's disease.

Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis.
            (Wang et al., 2012) Download
SCOPE: Adult hippocampal neurogenesis is a lifelong feature of brain plasticity that appears to be critically involved in adult brain function and neurological disease. Recent studies suggest that (-)-epigallocatechin-3-gallate (EGCG), which is the main polyphenolic constituent of green tea, may be used for the prevention and treatment of various neurodegenerative diseases. We hypothesized that EGCG promotes adult neurogenesis, which may be beneficial to hippocampus-dependent learning and memory. METHODS AND RESULTS: We show that EGCG treatment significantly increased the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in adult hippocampal neural progenitor cell (NPC) cultures and in the dentate gyrus of adult mice. Meanwhile, EGCG markedly improved spatial cognition in mice. These events are associated with the sonic hedgehog (Shh) signaling pathway. We observed that EGCG triggered a robust upregulation of Shh receptor (Patched) mRNA and protein expression in cultured NPCs as well as an upregulation of the downstream Shh transcriptional target Gli1. These changes were further confirmed in the hippocampus of mice administered EGCG. The blockage of the Shh signal with the pharmacological inhibitor cyclopamine attenuated EGCG-induced hippocampal neurogenesis. CONCLUSION: Our results provide strong evidence that EGCG enhances adult hippocampal neurogenesis.


 

Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases.
            (Weinreb et al., 2004) Download
Tea consumption is varying its status from a mere ancient beverage and a lifestyle habit, to a nutrient endowed with possible prospective neurobiological-pharmacological actions beneficial to human health. Accumulating evidence suggest that oxidative stress resulting in reactive oxygen species generation and inflammation play a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers, transition metal (e.g., iron and copper) chelators, and nonvitamin natural antioxidant polyphenols in the clinic. These observations are in line with the current view that polyphenolic dietary supplementation may have an impact on cognitive deficits in individuals of advanced age. As a consequence, green tea polyphenols are now being considered as therapeutic agents in well controlled epidemiological studies, aimed to alter brain aging processes and to serve as possible neuroprotective agents in progressive neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. In particular, literature on the putative novel neuroprotective mechanism of the major green tea polyphenol, (-)-epigallocatechin-3-gallate, are examined and discussed in this review.

 


 

References

Borgwardt, S, et al. (2012), ‘Neural effects of green tea extract on dorsolateral prefrontal cortex.’, Eur J Clin Nutr, 66 (11), 1187-92. PubMedID: 22929964
Chou, FP, et al. (2000), ‘Specific induction of glutathione S-transferase GSTM2 subunit expression by epigallocatechin gallate in rat liver.’, Biochem Pharmacol, 60 (5), 643-50. PubMedID: 10927022
Mandel, SA, et al. (2005), ‘Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway.’, Neurosignals, 14 (1-2), 46-60. PubMedID: 15956814
Reubinoff, BE, et al. (2001), ‘Neural progenitors from human embryonic stem cells.’, Nat Biotechnol, 19 (12), 1134-40. PubMedID: 11731782
Rezai-Zadeh, K, et al. (2008), ‘Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice.’, Brain Res, 1214 177-87. PubMedID: 18457818
Wang, Y, et al. (2012), ‘Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis.’, Mol Nutr Food Res, 56 (8), 1292-303. PubMedID: 22692966
Weinreb, O, et al. (2004), ‘Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases.’, J Nutr Biochem, 15 (9), 506-16. PubMedID: 15350981