Salvianic borneol ester reduces β-amyloid oligomers and prevents cytotoxicity

Mei Han1,4, Ying Liu1, Bing Zhang1, Jinping Qiao1, Weidong Lu2, Yanyan Zhu3, Yongyan Wang4, and Changqi Zhao3

1Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China, 2Osher Research Center, Harvard Medical School, Boston, MA, USA, 3Beijing Key Laboratory of Engineered Drug and Biotechnology Laboratory, College of Life Science, Beijing Normal University, Beijing, China, and 4College of Nature Resources and Technology, Beijing Normal University, Beijing, China

Abstract

Context: The destabilization of β-amyloid (Aβ) peptide aggregates and the protection of functional cells are the attractive therapeutic strategies for Alzheimer's disease (AD). Some active ingredients of Salvia miltiorrhiza f. alba C.Y.Wu & H.W.Li (Lamiaceae) (SM) have attracted increasing attention for the treatment of neurodegenerative diseases.

Objective: Salvianic borneol ester (SBE) is a new compound based on SM formulas. The present study was designed to examine the anti-amyloid effects and neuroprotection of SBE in vitro.

Materials and methods: The destabilizing effects of SBE and its related compounds (salvianic acid A and borneol) on preformed Aβ oligomers were measured by using fluorescence spectroscopy with thioflavin T (ThT) and the destabilizing effects of SBE were further confirmed visually by transmission electron microscopy (TEM). The neuroprotective effects of SBE against hydrogen peroxide (H2O2)-induced toxicity in human neuroblastoma cells (SH-SY5Y) and motor neuron hybridoma cells (VSC 4.1) were shown by MTT assay and morphological observation.

Results: SBE showed the most significant destabilizing effect, though the mixture of salvianic acid A and borneol also destabilized Aβ1–40 oligomers. The destabilizing activity of salvianic acid A or borneol alone was not significant. SBE destabilized Aβ1–40 oligomers in dose- and time-dependent manners and the destabilizing effect could also be seen in the photographs of TEM. Furthermore, SBE could protect SH-SY5Y cells and VSC 4.1 cells against H2O2-induced toxicity in a dose-dependent manner.

Discussion and conclusion: SBE had the bifunctional activities of anti-amyloid and neuroprotection. It may have therapeutic potential for AD and be an alternative lead compound for developing new drugs against AD.

Keywords: Alzheimer's disease, β-amyloid peptide, neuroprotection, salvianic borneol ester, thioflavin T, transmission electron microscopy

Introduction

Alzheimer's disease (AD) is a neurodegenerative disease characterized by loss of memory and cognition especially in the elderly. Since existing treatments for AD only offer limited symptom alleviation (Lleó et al., 2006; Jakob-Roetne Jacobsen, 2009), new alternative agents are urgently needed. One of the major pathological features of AD is the appearance of senile plaques composed mainly of β-amyloid (Aβ) peptides (Jakob-Roetne Jacobsen, 2009). Monomeric Aβ can aggregate into oligomeric and fibrillar forms and finally become senile plaques in the brain. The Aβ aggregates possess neurotoxicity in vivo and in vitro (Yankner et al., 1990; Hardy Higgins, 1992). Recent evidence has shown that oligomeric form
of Aβ rather than the fibril is primarily responsible for the neuronal injury and death (Cleary et al., 2005). Therefore, some therapeutic efforts are targeted at finding anti-amyloid agents to disrupt Aβ aggregation, especially to reduce oligomers in AD (Hirohata et al., 2002; Shah et al., 2008).

Common Aβ oligomer neurotoxic mechanisms are related with oxidative stress (Behl, 1997). Aβ oligomers generated reactive oxygen species (ROS), which can cause damage to cellular lipids, proteins, or DNA and eventually lead to neuronal death (Zhu et al., 2007). As the major component of ROS, hydrogen peroxide (H₂O₂) is generally used as an inducer of oxidative stress in vitro models by many laboratories (Tabner et al., 2002; Zhang et al., 2007; Bi et al., 2008). Some compounds have been proven to possess neuroprotective potential as antioxidants, such as curcumin, resveratrol, lipoic acid, (−)-epigallocatechin-3-gallate (EGCG), and melatonin (Mecocci et al., 2008; Zhao, 2009).

Salvia miltiorrhiza f. alba (Lamiaceae) is a traditional medicinal plant. SM formulas composed mainly of SM, borneol, and Panax notoginseng (Burkill) F.H.Chen ex C. Y.Wu & K.M.Feng (Araliaceae) are commonly used in the clinical treatment of cardiovascular diseases and cerebrovascular diseases (Zhou et al., 2005). Recently, SM and its active ingredients have attracted increasing attention for the treatment of cardiovascular diseases and cerebrovascular diseases (Bi et al., 2008; Zhao, 2009). Salvianic acid A and borneol at 1:1 (5 µg/mL, respectively). Further, the incubation of Aβ oligomers with/without a test agent were added to PBS (0.01 M phosphate-buffered saline (PBS, pH=7.4) containing 1 mM EDTA. The solution was incubated at 37°C for 72 h with shaking. The resulting Aβ1–40 oligomers were stored at −80°C and were diluted 5-fold to give a concentration of 0.1 mg/mL prior to assay.

The reaction mixtures containing aliquots of Aβ oligomers with/without a test agent were incubated at 37°C for 30 min with shaking. The agents used in this experiment included SBE, salvianic acid A, borneol at a final concentration of 10 µg/mL, and a mixture of salvianic acid A and borneol at 1:1 (5 µg/mL, respectively). Further, the incubation of Aβ oligomers with SBE was performed at various final concentrations of SBE (0.31–40 µg/mL) and hours (0–6 h) (10 µg/mL of SBE).

ThT fluorescence assay
ThT-induced fluorescence changes were measured to quantify Aβ oligomers by using a RF-5301PC Spectrofluorometer (Shimadzu, Japan) according to the method described by Fujiwara et al. (2006). The mixtures containing Aβ oligomers with/without a 10 µg/mL test agent were added to PBS (0.01 M, pH=7.4) containing 3 µM ThT (Sigma). Each assay was run in triplicate.

![Figure 1. A synthetic scheme map of salvianic borneol ester (SBE).](image_url)
Excitation and emission wavelengths were set at 445 and 485 nm, respectively. The fluorescence intensity of 3 μM ThT was measured as the background. The fluorescence intensity of 3 μM ThT and Aβ oligomers without test agent was considered to be 100% as control. The amount of Aβ oligomers were calculated as a percentage of control.

Transmission electron microscopy
Aβ1–40 oligomers were incubated with/without SBE at concentrations 2.5, 20, and 40 μg/mL for 30 min at 37°C with shaking. Following incubation, 5 μL of samples were placed on copper grids for 60 sec; excess solutions were removed by using filter papers to touch the edge of the grids. The grids were washed with distilled water. After air-drying, the specimens were examined under H800 transmission electron microscope (TEM) (Hitachi, Japan) at an instrumental magnification of 100,000×. The length of Aβ1–40 oligomers was measured.

Cell culture and neurotoxicity assay
SH-SY5Y cells and VSC 4.1 cells (obtained from Peking University Health Science Center) were cultured in Dulbecco’s modified Eagle’s medium (DMEM)/F12 medium with 10% fetal bovine serum (Gibco, Carlsbad, CA) in 5% CO2 humidified atmosphere at 37°C. The culture medium was changed every 48 h.

Our preliminary test found the cytotoxicity was significant at 24 h after 200 μM H2O2 was added to cultured SH-SY5Y and VSC 4.1 (data not shown). SH-SY5Y cells and VSC 4.1 cells were separately plated in 96-well plates at a density of 1.67 × 104 cells/mL. Cells were pre-incubated with various concentrations of SBE in culture medium for 24 h. The final concentrations of SBE ranged between 0.3 and 10 μM. After that, cells were exposed to 200 μM H2O2 for another 24 h and cell viability was finally tested. As shown in Figure 5, H2O2-induced toxicity was attenuated after cells were incubated with SBE in concentration-dependent manner. Compared with control, SBE at 1, 3, and 10 μM significantly increased the cell viability to 47.0 ± 7.0, 54.7 ± 5.4, and 62.2 ± 3.6%, respectively, in SH-SY5Y cells (Figure 5A), to 39.7 ± 6.0, 59.8 ± 7.0, and 65.9 ± 3.6%, respectively, in VSC4.1 cells (Figure 5B). The protective effects could also be confirmed by the morphological observation (Figure 5C–5H). After exposure to H2O2, neurite degeneration of cells was evident and Figure 2, Aβ1–40 oligomers was significantly reduced in the presence of SBE and the mixture (salvianic acid A and borneol, 1:1), but the destabilizing activity of salvianic acid A or borneol alone was not significant. Though the mixture of salvianic acid A and borneol was effective, SBE showed stronger destabilizing effect.

SBE destabilized preformed Aβ1–40 oligomers. Significant destabilizing effects of SBE were observed dose-dependently (Figure 3A) and time-dependently (Figure 3B). The EC50 value was 19.4 μg/mL. Furthermore, TEM was used to confirm the form of the aggregates and the effect of SBE on Aβ1–40 oligomers. Figure 4A showed the Aβ1–40 oligomers without treatment, and the mean length of oligomers was 85.2 ± 6.3 nm. As is shown in Figure 4, in the presence of SBE, less Aβ1–40 oligomers was observed visually by TEM. The Aβ1–40 oligomers were destabilized by SBE dose-dependently.

We then examined the neuroprotective effects of SBE on SH-SY5Y cells and VSC4.1 cells. We pre-incubated SH-SY5Y and VSC 4.1 cells with various doses of SBE for 24 h, then exposed cells to 200 μM H2O2 solution for another 24 h and cell viability was finally tested. As shown in Figure 5, H2O2-induced toxicity was attenuated after cells were incubated with SBE in concentration-dependent manner. Compared with control, SBE at 1, 3, and 10 μM significantly increased the cell viability to 47.0 ± 7.0, 54.7 ± 5.4, and 62.2 ± 3.6%, respectively, in SH-SY5Y cells (Figure 5A), to 39.7 ± 6.0, 59.8 ± 7.0, and 65.9 ± 3.6%, respectively, in VSC4.1 cells (Figure 5B). The protective effects could also be confirmed by the morphological observation (Figure 5C–5H). After exposure to H2O2, neurite degeneration of cells was evident and Figure 2, Aβ1–40 oligomers was significantly reduced in the presence of SBE and the mixture (salvianic acid A and borneol, 1:1), but the destabilizing activity of salvianic acid A or borneol alone was not significant. Though the mixture of salvianic acid A and borneol was effective, SBE showed stronger destabilizing effect.

SBE destabilized preformed Aβ1–40 oligomers. Significant destabilizing effects of SBE were observed dose-dependently (Figure 3A) and time-dependently (Figure 3B). The EC50 value was 19.4 μg/mL. Furthermore, TEM was used to confirm the form of the aggregates and the effect of SBE on Aβ1–40 oligomers. Figure 4A showed the Aβ1–40 oligomers without treatment, and the mean length of oligomers was 85.2 ± 6.3 nm. As is shown in Figure 4, in the presence of SBE, less Aβ1–40 oligomers was observed visually by TEM. The Aβ1–40 oligomers were destabilized by SBE dose-dependently.

We then examined the neuroprotective effects of SBE on SH-SY5Y cells and VSC4.1 cells. We pre-incubated SH-SY5Y and VSC 4.1 cells with various doses of SBE for 24 h, then exposed cells to 200 μM H2O2 solution for another 24 h and cell viability was finally tested. As shown in Figure 5, H2O2-induced toxicity was attenuated after cells were incubated with SBE in concentration-dependent manner. Compared with control, SBE at 1, 3, and 10 μM significantly increased the cell viability to 47.0 ± 7.0, 54.7 ± 5.4, and 62.2 ± 3.6%, respectively, in SH-SY5Y cells (Figure 5A), to 39.7 ± 6.0, 59.8 ± 7.0, and 65.9 ± 3.6%, respectively, in VSC4.1 cells (Figure 5B). The protective effects could also be confirmed by the morphological observation (Figure 5C–5H). After exposure to H2O2, neurite degeneration of cells was evident and...
The anti-amyloid and neuroprotection of SBE

© 2011 Informa Healthcare USA, Inc.

A reduction in the number of cells was observed compared with control. In groups of SBE pretreated cells, the neurite degeneration was attenuated and the number of cells increased.

Discussion

A conventional idea for searching a new lead compound from traditional Chinese medicine (TCM) is to separate active ingredients from a single herb. We adopt a new idea to explore new bioactive compounds, which are combined by two compounds of TCM. SBE is a compound formed as a product of synthesis of salvianic acid A and borneol, based on classical SM formulas that are widely used in TCM. This study provides the first evidence that SBE destabilizes preformed Aβ oligomers and protects SH-SY5Y cells and VSC4.1 cell against H2O2-induced cytotoxicity. According to the data, the destabilizing activity of salvianic acid A or borneol alone was not significant. Though the mixture of salvianic acid A and borneol could destabilize Aβ oligomers, the effect of SBE was more significant. SBE destabilized Aβ1–40 oligomers at a similar level with cryptotanshinone in ThT fluorescence assay (data not shown). Based on these findings, it is reasonable to conclude that SBE is a novel alternative template for developing therapeutic agents of AD and research for new compounds through combination of chemical components from TCM is one of viable strategies of drug discovery.

Accumulating evidence suggests that Aβ oligomers are the most neurotoxic forms among Aβ aggregates (Dahlgren et al., 2002). It was reported that oligomers inhibit neuronal viability 10-fold more than fibrils and ~40-fold more than unaggregated peptides. Protofibrils, one kind of oligomers, are <200 nm in length and bind ThT with increased fluorescence intensity (Jan et al., 2010). Fibrils have been described as >1 μm long and Aβ monomers do not change the fluorescence intensity of ThT (Jan et al., 2010). In our study, the Aβ aggregates are about 85 nm in length and bind ThT. These results suggest that the Aβ aggregates formed in our experiment are just the protofibrils possessing strong neurotoxicity. SBE could destabilize oligomers, the most toxic Aβ aggregates, which enhances the value of SBE to be a potential AD drug.

Like most other compounds destabilizing Aβ fibrils or oligomers, SBE has aromatic group and phenolic hydroxy groups that have been considered as an...
important structural feature for an effective anti-amyloid agent (Porat et al., 2006; Hawkes et al., 2009). On the other hand, some nonsteroidal anti-inflammatory drugs (such as ibuprofen) that have an aromatic-based hydrophobic structure with some fused ring structures and methyl and/or carboxyl groups can also destabilize Aβ aggregates (Hirohata et al., 2008). Therefore, the structures of amyloid-destabilizing compounds are various and the exact destabilizing mechanisms are unclear. In the present study, salvianic acid A and borneol alone could not destabilize Aβ1–40 oligomers, may be because their sizes were too small to fully occupy the binding pocket of oligomers. When they exist simultaneously in the form of mixture or compound SBE, they occupied more binding sites in the binding pocket and destabilized Aβ1–40 oligomers. SBE might bind to oligomers more stably and showed stronger destabilizing effect.

SH-SY5Y cells are human neuroblastoma cells that are commonly used nerve cell line in the study of neurodegenerative disease. VSC4.1 cells are motor neuron hybridoma cells that have some characteristics of normal cells. We used these two kinds of cell lines as H2O2-injured cell models. SBE similarly protected SH-SY5Y and VSC 4.1 against H2O2-induced cytotoxicity. SBE at 0.3–10 μM was not cytotoxic, which was detected in our preliminary study (data not shown). In these H2O2-injured cell models, the damage induced by H2O2 was very serious (only about 20% cell viability was left). Cell viability of cells treated with 10 μM SBE reached about 60%, approximately three times the cell viability of the H2O2-injured cells without SBE. SBE showed strong antioxidative bioactivity in both cells.

Based on the bifunctional activities of anti-amyloid and neuroprotection, it is reasonable to suggest that SBE will be an alternative lead compound for the development of new drugs against AD. Additional studies are needed to elucidate the mechanisms underlying the anti-amyloid and antioxidative effects of SBE and to confirm its efficacy in an animal model of AD. Toxicological research of SBE is also quite necessary.

Conclusion

In this study, we showed SBE destabilized preformed Aβ oligomers and protected SH-SY5Y cells and VSC 4.1 cells against H2O2-induced toxicity. These results suggest that SBE may have therapeutic potential for the treatment of AD.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30672491) and by the Beijing New Medical Discipline Based Group (XK100270569). We are grateful to Prof. Xiaohui Zheng for generously providing SBE.
Declaration of interest

There is no conflict of interest to declare.

References


