Mixed Tocopherols Prevent Mammary Tumorigenesis by Inhibiting Estrogen Action and Activating PPAR-γ

Updated Version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-08-3028

Cited Articles
This article cites 47 articles, 19 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/15/12/4242.full.html#ref-list-1

Citing Articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/15/12/4242.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.
Mixed Tocopherols Prevent Mammary Tumorigenesis by Inhibiting Estrogen Action and Activating PPAR-γ

Hong Jin Lee, Jin Hyung Ju, Shi by Paul, Jae-Young So, Andrew DeCastro, Amanda Smolarek, Mao-Jung Lee, Chung S. Yang, Harold L. Newmark, and Nanjoo Suh

Abstract

Purpose: Tocopherols are lipophilic antioxidants present in vegetable oils. Although the antioxidant and anticancer activities of α-tocopherol (vitamin E) have been studied for decades, recent intervention studies with α-tocopherol have been negative for protection from cancer in humans. The tocopherols consist of four isoforms, which are the α, β, γ, and δ variants, and recent attention is being given to other isoforms. In the present study, we investigated the inhibitory effect of a tocopherol mixture rich in γ- and δ-tocopherols against mammary tumorigenesis.

Experimental Design: Female Sprague Dawley rats were treated with N-methyl-N-nitrosourea (NMU), and then fed diets containing 0.1%, 0.3%, or 0.5% mixed tocopherols rich in γ- and δ-tocopherols for 9 weeks. Tumor burden and multiplicity were determined, and the levels of markers of inflammation, proliferation, and apoptosis were evaluated in the serum and in mammary tumors. The regulation of nuclear receptor signaling by tocopherols was studied in mammary tumors and in breast cancer cells.

Results: Dietary administration of 0.1%, 0.3%, or 0.5% mixed tocopherols suppressed mammary tumor growth by 38%, 50%, or 80%, respectively. Tumor multiplicity was also significantly reduced in all three mixed tocopherol groups. Mixed tocopherols increased the expression of p21, p27, caspase-3, and peroxisome proliferator activated receptor-γ, and inhibited AKT and estrogen signaling in mammary tumors. Our mechanistic study found that γ- and δ-tocopherols, but not α-tocopherol, activated peroxisome proliferator activated receptor-γ and antagonized estrogen action in breast cancer.

Conclusion: The results suggest that γ- and δ-tocopherols may be effective agents for the prevention of breast cancer.

Vitamin E is a fat-soluble vitamin essential for humans (1). The vitamin E family comprises eight lipophilic, naturally occurring compounds that include four tocopherols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain) designated as α, β, γ, and δ (2). The prevalent tocopherols in foods are the α, γ, and δ variants, natural (RRR) tocopherols differing only in the number and location of the methyl groups in the chromanol ring system (Fig. 1). Tocopherols and tocotrienols are phenolic antioxidants present in many vegetable oils, and all their isomers are known to have strong antioxidant activities (3–5). In the United States, α-tocopherol and γ-tocopherol are the most common dietary tocopherols due to their high amounts in commercially produced vegetable oils such as soybean, corn, and cottonseed (3, 4, 6). Although γ-tocopherol is more abundant than α-tocopherol in the human diet, α-tocopherol has been considered the classic “vitamin E” because it is the major tocopherol found in plasma and tissues (3), and it has superior activity over other tocopherols in the fertility-restoration assay (7, 8).

Epidemiologic evidence supporting a link between vitamin E and cancer is limited, and the results of a few completed studies with vitamin E are not consistent (2, 9). Similarly, the results of studies with pure α-tocopherol or its more stable acetate ester in different cancer models including colon, breast, and prostate, are also not conclusive (2, 9, 10). A randomized, double-blind, placebo-controlled Alpha-Tocopherol, Beta-Carotene lung cancer prevention study conducted from 1985 to 1993 examined the effect of α-tocopherol and β-carotene daily supplements on the incidence of lung cancer and possibly other cancers (11). The study found that male smokers receiving 50 mg/day of synthetic DL-α-tocopherol acetate had a lower prostate cancer incidence and a significant reduction in prostate cancer deaths when compared with the control group (12).

Following the Alpha-Tocopherol, Beta-Carotene cancer prevention study, two large randomized trials assessing the effect of vitamin E supplementation on cancer incidence were...
Mammary tumorigenesis (24, 25). We used a readily available erol (21, 23). Our laboratory recently showed cancer-preventive crypt foci in the colon of rats, a recognized early biomarker of in a significant inhibition of azoxymethane-induced aberrant diet. Administration of the tocopherol-containing diet resulted erol) added at 0.1% to a standardized semipurified laboratory www.aacrjournals.org Clin Cancer Res 2009;15(12) June 15, 20094243 vitamin E (26). Administration of the tocopherol-containing diet resulted found no significant association between cancer incidence and established: The Heart Outcomes Prevention Evaluation trial (13) and the Women’s Health Study trial (14). These studies found no significant association between cancer incidence and vitamin E (α-tocopherol) ingestion (13), and there was no overall benefit for prevention of major adverse cardiovascular events or cancer (14). Interestingly, however, a nested case-control study with male residents in Washington County, MD, showed a statistically significant inverse association between γ-tocopherol and the risk of prostate cancer, whereas α-tocopherol showed no statistically significant benefit (15).

γ-Tocopherol, the most common form of vitamin E in the U.S. diet and the second most common form in human tissues, has shown anti-inflammatory and anticancer activity in numerous models of colon, breast, and prostate cancer (2, 16–19). Furthermore, γ-tocopherol effectively inhibited cyclooxygenase (COX; ref. 20, 21), trapped reactive nitrogen species (22, 23), and showed stronger anti-inflammatory activity than α-tocopherol (21, 23). Our laboratory recently showed cancer-preventive activity for mixed tocopherols in animal models of colon and mammary tumorigenesis (24, 25). We used a readily available mixed tocopherol preparation (containing over 50% γ-tocopherol) added at 0.1% to a standardized semipurified laboratory diet. Administration of the tocopherol-containing diet resulted in a significant inhibition of azoxymethane-induced aberrant crypt foci in the colon of rats, a recognized early biomarker of colon cancer risk (24), and there was also a significant inhibition of N-methyl-N-nitrosourea (NMI)-induced mammary tumorigenesis (25). In addition, Ju et al. recently reported that the mixed tocopherols inhibit colon carcinogenesis by inducing apoptosis, inhibiting inflammation, and reducing the oxidative/nitrosative stress (26).

Tocopherols have been shown to bind to the estrogen receptor and to work as antagonists of estrogen signaling (27). This led us to study the mechanism of inhibition of mammary tumorigenesis by each tocopherol isoform. In addition to the antiestrogenic action of tocopherols, they may activate a nuclear receptor, peroxisome proliferator activated receptor-γ (PPAR-γ), due to their structural similarity to the thiazolidinedione PPAR-γ activator, troglitazone (28). Both α- and γ-tocopherol have been shown to activate PPAR-γ expression and transactivation in colon cancer cells, and γ-tocopherol is a better modulator of PPAR-γ expression than is α-tocopherol (16, 28).

In our earlier study, we showed that dietary administration of 0.1% mixed tocopherols inhibited NMIU-induced mammary tumorigenesis and expression of proliferating cell nuclear antigen in tumor tissues (25). In the present study, we determined the efficacy of mixed tocopherols at three different doses on NMIU-induced mammary tumorigenesis and also investigated the mechanisms of action of tocopherols in mammary tumors and in cultured MCF-7 and T47D human breast cancer cells. We investigated whether mixed tocopherols inhibit inflammatory markers or regulate nuclear receptor signaling, such as estrogen receptor or PPAR-γ, in mammary tumors, and whether these actions may contribute to the suppression of mammary tumor growth by tocopherols in experimental animals. We report here that mixed tocopherols may inhibit tumor growth through the regulation of nuclear receptor signaling during mammary tumorigenesis.

Materials and Methods

Reagents and cell culture. α-Tocopherol, γ-tocopherol, and δ-tocopherol were purchased from Sigma. The compounds were dissolved in DMSO. The human MCF-7 and T47D breast cancer cell lines were obtained from the American Type Culture Collection. The cells were maintained in DMEM/F-12 supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37°C and 5% CO2, and passed every 3 to 4 d. Measurement of cell proliferation by [3H]thymidine incorporation. MCF-7 and T47D cells were plated at a density of 8,000 cells/well in 24-well plates and treated with compounds in 10% charcoal-stripped fetal bovine serum/phenol red-free RPMI medium for 3 d. Before harvest, the cells were incubated with 1 μCi [3H]thymidine for 3 h at 37°C and were washed with PBS. The cells were precipitated with cold 10% trichloroacetic acid for 10 min and solubilized with 0.5 M solubilization buffer (0.2 M NaOH, 40 μg/mL salmon sperm DNA) for 2 h at room temperature. The [3H]thymidine incorporated into the DNA of MCF-7 and T47D cells was determined using a scintillation spectrometer (Beckman Coulter).

Transient transfection of PPAR-γ. pCMX-mPPAR-γ1, PPRe3ztk-Luc, pCMX-PPAR-α, and pCMV-β-gal vectors were kindly provided by Dr. David Mangelsdorf (University of Texas Southwestern Medical
with a single i.p. injection of the carcinogen NMU (50 mg/kg body weight). One week after NMU injection, rats were fed AIN-93M control diet or AIN-93M diets containing mixed tocopherols (0.1, 0.3, or 0.5% of the diet). Tumors were palpated weekly. Nine weeks after NMU injection, the rats were sacrificed and the tumors were weighed and counted at autopsy. The average tumor burden was the sum of tumor weights in the group per number of rats in the group. The average tumor multiplicity was the sum of the number of tumors in each group per number of rats per group. All animal studies were done in accordance with an institutionally approved protocol.

Analysis of tocopherol levels in rat serum. Rat serum was collected at autopsy, and serum tocopherol levels (α-, δ-, or γ-tocopherol) were measured by a method modified from a previously described procedure (30). In brief, fat-soluble vitamins were extracted from 150 μL of plasma with ethanol and hexane, and then dissolved in a mixture of ethanol and acetonitrile. A high performance liquid chromatography (HPLC) system was developed using a Supelcosil LC18 column, 5 μm (4.6 × 150 mm) with ethanol:acetonitrile (45:55) as the mobile phase. A Waters 490 multiwavelength detector (Waters-Millipore) was used to detect absorbance at 292 nm (α-, γ-, δ-tocopherol) and 325 nm (retinol). Reference samples of pure α-, γ-, and δ-tocopherol as well as

<table>
<thead>
<tr>
<th>Group*</th>
<th>Retinol (μmol/L)</th>
<th>α-Tocopherol (μmol/L)</th>
<th>γ-Tocopherol (μmol/L)</th>
<th>δ-Tocopherol (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN-93M control diet</td>
<td>0.86 ± 0.37</td>
<td>20.8 ± 10.9</td>
<td>0.15 ± 0.09</td>
<td>0.03 ± 0.04</td>
</tr>
<tr>
<td>0.1% mixed tocopherols in AIN-93M diet</td>
<td>0.69 ± 0.15</td>
<td>24.0 ± 9.2 (1.2-fold)</td>
<td>1.14 ± 0.74* (7.6-fold)</td>
<td>0.59 ± 0.41* (19.7-fold)</td>
</tr>
<tr>
<td>0.3% mixed tocopherols in AIN-93M diet</td>
<td>0.81 ± 0.22</td>
<td>29.4 ± 7.8 (1.4-fold)</td>
<td>2.67 ± 0.73* (19.1-fold)</td>
<td>1.69 ± 0.44* (56.3-fold)</td>
</tr>
<tr>
<td>0.5% mixed tocopherols in AIN-93M diet</td>
<td>0.81 ± 0.17</td>
<td>27.7 ± 4.3 (1.3-fold)</td>
<td>3.53 ± 1.03* (23.2-fold)</td>
<td>2.42 ± 0.47* (80.7-fold)</td>
</tr>
</tbody>
</table>

*All rats (21 ± 1 d old; n = 12 per group) were given an i.p. injection of 50 mg NMU per kilogram body weight 1 wk before starting the feeding of mixed tocopherols. Rats were fed a control or mixed tocopherol–containing diets for 9 wk. Serum samples were collected at autopsy and analyzed for the levels of retinol, α-tocopherol, γ-tocopherol, and δ-tocopherol. The data are expressed as the mean ± SE (n = 6).

†Significantly different from control by the Student’s t test, P < 0.01.

‡Significantly different from control by the Student’s t test, P < 0.001.
Table 2. Serum levels of PGE₂, LTB₄, and 8-isoprostane from Sprague-Dawley rats fed control diet or mixed tocopherols diet

<table>
<thead>
<tr>
<th>Group</th>
<th>PGE₂ (pg/mL)</th>
<th>LTB₄ (pg/mL)</th>
<th>8-Isoprostane (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN-93M control diet</td>
<td>7,658.6 ± 1820.5</td>
<td>686.0 ± 78.1</td>
<td>287.5 ± 58.8</td>
</tr>
<tr>
<td>0.1% mixed tocopherols in AIN-93M diet</td>
<td>8,898.7 ± 1676.0</td>
<td>714.7 ± 47.9</td>
<td>290.4 ± 71.5</td>
</tr>
<tr>
<td>0.3% mixed tocopherols in AIN-93M diet</td>
<td>8,443.1 ± 1573.2</td>
<td>700.9 ± 49.0</td>
<td>248.4 ± 40.6</td>
</tr>
<tr>
<td>0.5% mixed tocopherols in AIN-93M diet</td>
<td>8,348.5 ± 1045.7</td>
<td>680.8 ± 30.6</td>
<td>255.1 ± 35.4</td>
</tr>
</tbody>
</table>

*All rats (21 ± 1 d old, n = 12 per group) were given an i.p. injection of 50 mg NMU per kilogram body weight 1 wk before starting the feeding of mixed tocopherols. Rats were fed with control or mixed tocopherol containing diet for 9 weeks. Serum samples were collected at autopsy and analyzed for the levels of PGE₂, LTB₄ and 8-isoprostane.

†The data are expressed as mean ± S.E. (n = 6). There is no significant difference among groups by statistical analysis.

retinol were obtained from the Centers for Disease Control and Prevention. The structures of α-, β-, γ-, and δ-tocopherol are shown in Fig. 1.

Histopathologic analyses and immunohistochemistry. Mammary tumors from each group were harvested at autopsy and fixed in 10% formalin for 24 h. They were paraffin-embedded, and cut into 4-µm-thick tissue sections. Individual tumors were evaluated histopathologically in H&E-stained tumor sections. For immunohistochemistry, the slides were incubated overnight at room temperature with antibody against cleaved caspase-3 (1:200 diluted; Cell Signaling Technology Inc.) and PPAR-γ (1:200; Santa Cruz Biotechnology). The slides were incubated with biotinylated secondary antibody, and then with avidin/biotinylated peroxidase complex for 30 min at room temperature (Vector Labs). The slides were then incubated with 3'-diaminobenzidine substrate, and the sections were counterstained with Modified Harris Hematoxylin. The images were taken randomly using a Zeiss AxioCam HRc camera fitted to a Zeiss Axioskope 2 Plus microscope.

Western blot analysis. Tumor samples were homogenized in radioimmunoprecipitation assay buffer (10 mmol/L Tris-HCl, 5 mmol/L EDTA, 150 mmol/L NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS) and analyzed for the expression of nuclear receptors, PPAR-γ and estrogen receptor-α, in NMU-induced mammary tumors. A, mammary tumor tissues were stained with H&E and immunostained with cleaved caspase-3 and PPAR-γ antibodies. Representative sections in mammary tumor tissues from the control group or mixed tocopherols – fed groups (0.1, 0.3, and 0.5%) are shown. B, mRNA level of PPAR-γ and estrogen receptor-α in tumors from the control group and those from mixed tocopherols – fed groups (0.1, 0.3, and 0.5%) were determined by quantitative PCR. Five different tumors from each group were analyzed and the average value of mRNA expression levels was shown. Significant difference was determined by Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001). C, the expression levels of protein markers in mammary tumors were determined by Western blot analysis. Three tumor tissues from each group were randomly selected and pooled for protein analysis. The antibodies against p21, p27, cleaved caspase-3, and PARP were used to probe for the indicated proteins. The levels of estrogen receptor-α, p-Akt, Akt, and COX-2 were also determined as described in Materials and Methods.

Fig. 3. Mixed tocopherols (MT) regulate the markers of apoptosis and cell proliferation, as well as the expression of nuclear receptors, PPAR-γ and estrogen receptor-α, in NMU-induced mammary tumors. A, mammary tumor tissues were stained with H&E and immunostained with cleaved caspase-3 and PPAR-γ antibodies. Representative sections in mammary tumor tissues from the control group or mixed tocopherols – fed groups (0.1, 0.3, and 0.5%) are shown. B, mRNA level of PPAR-γ and estrogen receptor-α in tumors from the control group and those from mixed tocopherols – fed groups (0.1, 0.3, and 0.5%) were determined by quantitative PCR. Five different tumors from each group were analyzed and the average value of mRNA expression levels was shown. Significant difference was determined by Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001). C, the expression levels of protein markers in mammary tumors were determined by Western blot analysis. Three tumor tissues from each group were randomly selected and pooled for protein analysis. The antibodies against p21, p27, cleaved caspase-3, and PARP were used to probe for the indicated proteins. The levels of estrogen receptor-α, p-Akt, Akt, and COX-2 were also determined as described in Materials and Methods.
0.1% sodium dodecyl sulfate, 0.1 mmol/L Na$_3$VO$_4$, 1% phenylmethylsulfonylfluoride, 1% aprotinin and 0.1% leupeptin) using a Dounce homogenizer (Wheaton), and the protein extracts were electrophoresed in 4% to 15% gradient gels (Biorad) and transferred to a polyvinylidene difluoride membrane (PALL). The primary antibodies against poly(ADP ribose) polymerase (PARP), cleaved PARP, cleaved caspase-3, phospho-Akt, Akt (Cell Signaling Technology Inc.), p21, p27, estrogen receptor-α (Santa Cruz Biotechnology), and COX-2 (Santa Cruz Biotechnology), actin (Sigma), and secondary antibodies (Santa Cruz Biotechnology) were used.

Quantitative reverse transcription-PCR analysis. These procedures have been previously reported (31). Labeled primers, including glyceraldehyde-3-phosphate dehydrogenase, estrogen receptor-α, and PPAR-γ, were obtained from Applied Biosystems.

Enzyme immunoassay. Procedures for prostaglandin E$_2$ (PGE$_2$), leukotriene B$_4$ (LTB$_4$), and 8-isoprostane were determined using enzyme immunoassay kits (Cayman Chemical).

Statistical analysis. Statistical significance was evaluated using Student’s t-test.

Results

The serum levels of γ-tocopherol and δ-tocopherol are significantly increased by the administration of mixed tocopherols in rats. We used AIN-93M control diet, 0.1%, 0.3%, or 0.5% mixed tocopherols in AIN-93M diet throughout the 9-week study. To determine the bioavailability of the diet tocopherol in experimental animals, we collected blood samples at autopsy and determined the serum levels of retinol, α-, γ-, and δ-tocopherol (Table 1). Serum levels of retinol in rats fed with 0.1%, 0.3%, or 0.5% mixed tocopherols were comparable with those in rats fed with the control diet. However, rats fed with 0.1%, 0.3%, or 0.5% mixed tocopherols had much higher levels of γ- and δ-tocopherols than the control group (Table 1). Rats fed with 0.1%, 0.3%, or 0.5% mixed tocopherols had the...
levels of γ-tocopherol increased by 7.6-, 19.1-, or 23.5-fold, respectively. The level of δ-tocopherol was barely detectable in the control group fed the AIN-93M diet, but rats fed with 0.1%, 0.3%, or 0.5% mixed tocopherols had the levels of δ-tocopherol increased by 19.7-, 56.3-, or 80.7-fold, respectively. Mixed tocopherols contained only a negligible amount of β-tocopherol, and the serum level of β-tocopherol was not detectable.

Mixed tocopherols inhibit NMU-induced mammary tumor growth and multiplicity without affecting the body weight. The body weight of rats fed the experimental diet containing 0.1%, 0.3%, or 0.5% mixed tocopherols was not significantly different from that of rats fed the control diet throughout the 9-week experimental period (Fig. 2A). Starting from five weeks after the carcinogen injection, mammary tumors became palpable, and the volume of mammary tumors was measured weekly (Fig. 2B). Mammary tumors continued to grow in the control group, whereas the tumor growth was inhibited in a dose-dependent fashion in groups fed with three different doses of mixed tocopherols (Fig. 2B). As shown in Fig. 2C and D, the tumor burden and tumor multiplicity at autopsy were also significantly reduced by the administration of mixed tocopherols. The percentage inhibition of the average tumor burden per rat for the groups fed 0.1%, 0.3%, or 0.5% mixed tocopherols was 38%, 50%, or 80%, respectively (Fig. 2C). The average tumor multiplicity from the control group was 4.8 ± 0.6 tumors per rat, whereas the average tumor multiplicity from the groups fed 0.1%, 0.3%, or 0.5% mixed tocopherols was 2.9 ± 0.6, 2.5 ± 0.4, or 1.8 ± 0.4 tumors per rat, respectively, which translated into reductions by 40%, 48%, or 63%, respectively (Fig. 2D).

Treatment with mixed tocopherols does not affect the levels of markers of inflammation and oxidation in the serum. Because γ-tocopherol is known to inhibit the activity of the COX enzyme (20, 21), we next determined whether inflammatory markers are modulated by tocopherols in our animal model of mammary tumorigenesis. Pro-inflammatory eicosanoids, PGE2 and LTB4, are the enzymatic products of the arachidonic acid pathway, COX and lipooxygenase-5, respectively. Different from a previous report in the azoxymethane/dextran sulfate sodium–induced colon cancer model in mice (26), the serum levels of PGE2 and LTB4 in the control group were not significantly different from those in the groups fed with mixed tocopherols (Table 2). The plasma level of 8-isoprostane, a marker of oxidative stress, was also measured to determine the antioxidant activity of the tocopherols during mammary carcinogenesis. As shown in Table 2, the plasma level of 8-isoprostane in the control group was also similar to that in the mixed tocopherol–fed groups.

Mixed tocopherols regulate PPAR-γ and estrogen receptor-α nuclear receptor signaling as well as cell proliferation and apoptosis in mammary tumors. To determine which factors may contribute to the inhibition of mammary tumorigenesis by tocopherols, we next analyzed the mammary tumors for various markers. Using H&E staining, we found that all tumors evaluated were adenocarcinomas, either papillary, cribriform, or tubular adenocarcinoma type. The tumor grade among the control group and mixed tocopherol-treated groups was not different (Fig. 3A). However, immunohistochemical analyses determined that administration of mixed tocopherols increased the expression of an apoptosis marker, cleaved caspase-3, and a nuclear receptor, PPAR-γ, in mammary tumors (Fig. 3A). The mRNA levels of PPAR-γ and estrogen receptor-α were also affected by mixed tocopherols. As shown in Fig. 3B, there was a significant induction of PPAR-γ mRNA level but a decrease of estrogen receptor-α mRNA level. In Western blot analysis, we found that dietary administration of mixed tocopherols up-regulated the cyclin-dependent kinase inhibitors p21 and p27, and increased the level of apoptosis markers, cleaved PARP and cleaved caspase-3, in mammary tumors (Fig. 3C). Mixed tocopherols also down-regulated the protein levels of estrogen receptor-α and phospho-Akt in mammary tumor tissues (Fig. 3C). However, the expression of total Akt and COX-2 protein in NMU-induced mammary tumor tissues was not significantly changed by treatment with mixed tocopherols (Fig. 3C).

γ- and δ-Tocopherols inhibit estradiol-induced cell proliferation in estrogen receptor–positive human breast cancer cells. We next investigated whether the tumor inhibitory effect of mixed tocopherols is due to the regulation of estrogen action in the breast. Because we found a significant inhibitory effect of mixed tocopherols in an estrogen receptor–positive animal model of breast cancer in rats, we chose the estrogen receptor–positive human breast cancer cell lines MCF-7 and T47D for further analysis in vitro (32). We used 10% charcoal-stripped fetal bovine serum/phenol red free RPMI medium to determine the possible antiestrogenic action of the compounds. As shown in Fig. 4A, α-tocopherol (10, 30, 60, and 100 μmol/L final concentration) did not significantly inhibit the growth of MCF-7 and T47D cells. Mixed tocopherols, γ-tocopherol and δ-tocopherol inhibited the estrogen-induced cell proliferation in MCF-7 cell. δ-Tocopherol markedly inhibited estrogen-induced cell proliferation in both MCF-7 and T47D cells in a dose-dependent manner.

γ- and δ-Tocopherols, but not α-tocopherol, enhance the transactivation of PPAR-γ in estrogen receptor–positive human breast cancer cells. PPAR-γ, which belongs to the nuclear receptor family, is known to be important for the inhibition of experimental breast cancer (33–35). Because we found that mixed tocopherols inhibited mammary tumorigenesis and increased the expression of PPAR-γ mRNA and protein in mammary tumors, we investigated whether individual isofoms activate PPAR-γ transcription in MCF-7 and T47D breast cancer cells. As shown in Fig. 4B, mixed tocopherols activated PPAR-γ transcription in MCF-7 and T47D cells. Among the tocopherol isofoms tested, α-tocopherol did not significantly activate PPAR-γ transcription, whereas γ-tocopherol, and more strongly δ-tocopherol, activated PPAR-γ transcription in MCF-7 and T47D cells (Fig. 4B).

Mixed tocopherols inhibit Akt phosphorylation and estrogen receptor-α expression in MCF-7 human breast cancer cells. To determine whether the mixed tocopherols regulate the same molecular targets in vivo and in vitro, we tested the expression levels of estrogen receptor-α and phospho-Akt in the presence of 17β-estradiol in MCF-7 human breast cancer cells. As shown in Fig. 4C, mixed tocopherols down-regulated the expression of estrogen receptor-α and inhibited the level of phospho-Akt without affecting total Akt.

Discussion

Tocopherols are phenolic antioxidants present in a variety of vegetable oils, and the biological effects of the classic vitamin E (α-tocopherol) in cancer prevention have been...
investigated over many decades (3–5). However, the potential benefits of α-tocopherol in the prevention of cancer in preclinical and clinical studies were not conclusive (2, 9, 10, 36). Knowledge of the effect of other key tocopherol isomers on breast cancer formation is very limited, although recent studies suggest that γ- and δ-tocopherols have more potent anti-inflammatory and antioxidant properties than α-tocopherol (2, 16–21, 23).

Because γ-tocopherol as a pure isomer is not easily available for studying long-term dietary administration, we investigated the cancer chemopreventive activity of dietary mixed tocopherols containing 57% γ-tocopherol and 24% δ-tocopherol in the NMU-induced mammary tumor model in rats. Oral administration of 500 mg of mixed tocopherols (containing 60% γ-tocopherol) daily to human subjects (37) resulted in levels of serum γ-tocopherol similar to what was observed with a 0.1% mixed tocopherol diet in rats (Table 1). The dose of mixed tocopherols used in humans (500 mg/day) is approximately 0.1% of a 2,000 kcal daily diet, so a rough correlation of supplemented serum levels in humans and in rats in the present study seems reasonable. We found that mixed tocopherols significantly suppressed mammary tumor growth, tumor burden, and tumor multiplicity in a dose-dependent fashion without affecting body weight (Fig. 2A to D). We further determined that administration of mixed tocopherols induced apoptosis, inhibited cell proliferation, and regulated the nuclear receptors, PPAR-γ and estrogen receptor-α, in mammary tumors (Fig. 3).

Estrogen receptor is one of the most important markers involved in human breast carcinogenesis. Administration of selective estrogen receptor modulators such as tamoxifen and raloxifene have significantly reduced the risk of estrogen receptor–positive breast cancer (38, 39). In our study, we found that mixed tocopherols down-regulated the expression of estrogen receptor-α in mammary tumor tissues (Fig. 3B and C) and in estrogen receptor–positive MCF-7 human breast cancer cells (Fig. 4C). Among the tocopherol isoflavones tested, γ-tocopherol and more strikingly δ-tocopherol significantly inhibited estradiol-induced growth of estrogen receptor–positive human breast cancer cells (Fig. 4A). α-Tocopherol is tri-methylated at the 5-, 7-, and 8-positions of the chromanol ring, whereas γ-tocopherol is dimethylated at the 7- and 8-positions and δ-tocopherol is monomethylated at the 8-position (Fig. 1). The difference in the chromanol ring structure may, in part, contribute to different antiestrogenic activities of each isof orm. Our studies suggest that δ- and/or γ-tocopherols may inhibit estrogen receptor–positive tumor growth by altering the cellular response to estrogen.

Interestingly, the tocopherols may regulate another nuclear receptor, PPAR-γ, due to the structural similarity to a known PPAR-γ activator, troglitazone (28). The ligands for PPAR-γ have shown growth inhibitory effects on different tumor cell types such as colon (40, 41), lung (42), and breast cancer (33, 43), and nuclear expression of PPAR-γ was reported to be associated with a lower risk of recurrence of women’s breast ductal carcinoma in situ (44). Therefore, PPAR-γ has been considered as a molecular target for cancer chemoprevention (33, 34). Here, we showed that mixed tocopherols markedly induced the mRNA and protein expression of PPAR-γ in mammary tumors (Fig. 3A and B). In addition, γ-, δ-, and mixed tocopherols (but not α-tocopherol) significantly increased the transactivation of PPAR-γ in estrogen receptor–positive MCF-7 and T47D human breast cancer cells (Fig. 4B). Because estrogen receptor-α has been shown to bind to PPAR response element and repress transactivation of the PPAR-γ (45), it is likely that activation of PPAR-γ may mediate the antiestrogenic action of tocopherols, especially for γ- and δ-tocopherols.

Bonofiglio et al. reported that the PPAR-γ and estrogen receptor-α pathways have an opposite effect on the regulation of the PI3K/Akt transduction (45). Recently, the PPAR-γ agonist rosiglitazone was reported to inhibit the Akt phosphorylation induced by insulin-like growth factor-1 in human adrenocortical carcinoma cells (46), suggesting a possible cross-talk between the PPAR-γ and Akt signaling pathways. Interestingly, γ-tocotrienol has been shown to inhibit the proliferation of mammary epithelial cells by regulating ErbB3 phosphorylation and eventually reducing Akt signaling (47, 48). We found that mixed tocopherols down-regulated the phosphorylation of Akt in both tumor tissues and MCF-7 human breast cancer cells (Figs. 3C and 4C), which may contribute to the strong induction of apoptosis in tumor tissues. Further studies are necessary to determine whether there is interaction between activation of PPAR-γ and regulation of Akt signaling by mixed tocopherols.

Ju et al. recently reported that mixed tocopherols inhibit inflammation and thus prevent colon carcinogenesis in azoxymethane/dextran sulfate sodium–treated CF-1 mice (26). In breast cancer, there was a significant association between a high expression level of COX-2 and a high risk of ductal carcinoma in situ recurrence among women with ductal carcinoma in situ in a case-control study (44). In addition, treatment with a COX-2 inhibitor together with a PPAR-γ agonist significantly delayed mammary tumorigenesis in the C3(1)-SV40 tumor antigen mouse model (49). These studies suggest that inflammation may play a role in breast cancer. However, in our NMU-induced breast cancer model, the serum levels of PGE2 and LTB4 in Sprague Dawley rats were not changed by NMU treatment (data not shown) compared with saline-treated groups, and mixed tocopherols did not affect their levels in the serum (Table 2) or in mammary tumors (data not shown). Furthermore, the protein expression level of COX-2 in mammary tumors was not changed by administration of the mixed tocopherols (Fig. 3C). Taken together, our data indicate that inflammation may not be a key factor in NMU-induced mammary tumorigenesis.

PPAR-γ and estrogen receptor-α are considered important molecular targets for cancer chemoprevention, and our data showed that mixed tocopherols regulate estrogen receptor-α and PPAR-γ nuclear receptor signaling which may, in part, contribute to their preventive effects in mammary tumorigenesis. In conclusion, mixed tocopherols, particularly γ- and/or δ-tocopherols, are safe and effective agents for the prevention of breast cancer in animals, suggesting that γ- and δ-tocopherols should be considered for studies in humans.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Maria Hyra and Lamberto R. Navoa of the Animal Facility in the Department of Chemical Biology for their technical assistance in taking care of the animals, and Dr. Allan Conney for helpful advice on our work.
Mixed Tocopherols and Mammary Tumorigenesis

References

