Vitamin D Is an Important Factor in Estrogen Biosynthesis of Both Female and Male Gonads*

KEIKO KINUTA, HIROYUKI TANAKA, TADASHI MORIWAKE, KUNIHiko AYA, SHIGEAKI KATO, AND YOSHIKI SEINO

Department of Pediatrics, Okayama University Medical School (K.K., H.T., T.M., K.A., Y.S.), Okayama 700-8558; and Institute of Molecular and Cellular Biosciences (S.K.), University of Tokyo, Tokyo 113-0092, Japan

ABSTRACT

In the present study, the role of vitamin D in the regulation of estrogen synthesis in gonads was investigated. Vitamin D receptor null mutant mice showed gonadal insufficiencies. Uterine hypoplasia and impaired folliculogenesis were observed in the female, and decreased sperm count and decreased motility with histological abnormality of the testis were observed in the male. The aromatase activities in these mice were low in the ovary, testis, and epididymis at 24%, 58%, and 35% of the wild-type values, respectively. The gene expression of aromatase was also reduced in these organs. Elevated serum levels of LH and FSH revealed hypergonadotropic hypogonadism in these mice. The gene expressions of estrogen receptor α and β were normal in gonads in these mice. Supplementation of estradiol normalized histological abnormality in the male gonads as well as in the female. Calcium supplementation increased aromatase activity and partially corrected the hypogonadism. When the serum calcium concentation was kept in the normal range by supplementation, the aromatase activity in the ovary increased to 60% of the wild-type level, but LH and FSH levels were still elevated. These results indicated that vitamin D is essential for full gonadal function in both sexes. The action of vitamin D on estrogen biosynthesis was partially explained by maintaining calcium homeostasis; however, direct regulation of the expression of the aromatase gene should not be neglected. (Endocrinology 141: 1317–1324, 2000)

1,25-DIHYDROXYVITAMIN D₃ [1,25-(OH)₂D₃], an active form of vitamin D, plays important roles in calcium homeostasis, bone metabolism, and cell differentiation and proliferation (1–3). Most of these actions are mediated by the nuclear vitamin D receptor (VDR) (4, 5). The VDR is expressed in calcium-regulating tissues such as intestine, skeleton, and parathyroid gland as well as in ovary and testis (6); however, VDR function in gonads remains unclear. VDR null mutant mice were established as a model for VDR itself and vitamin D function (7). In addition to the hypocalcemic rickets, uterine hypoplasia and impaired folliculogenesis were found in most of the female VDR null mutant mice, and estrogen supplementation increased the uterine weight of the mice (7). These results indicated that the uteri of the mice were in an estrogen-deficient state and suggested that VDR plays a role in estrogen production in the ovary. In male gonads, certain abnormalities may exist, although macroscopically the testis of the VDR null mutant male mice appeared normal.

To clarify the pathophysiology of the disorder of gonads in the VDR null mutant mice, the activity of aromatase cytochrome P450 (P450arom), a key enzyme in estrogen biosynthesis, and the expression of the CYP19 gene encoding P450arom (8) were investigated.

Received June 29, 1999.
Address all correspondence and requests for reprints to: Dr. Hiroyuki Tanaka, Department of Pediatrics, Okayama University Medical School, 2–5–1 Shikata-cho, Okayama 700-8558, Japan. E-mail: hrtanaka@hospital.okayama-u.ac.jp.

* This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan and a grant from the Ministry of the Health and Welfare of Japan.

Materials and Methods

Materials

[18-3H]Androstenedione (24.7 Ci/mmol; catalogue no. NET926) was a product of NEN Life Science Products (Boston, MA). Glucose-6-phosphate, NADP⁺, NADPH, glucose-6-phosphate dehydrogenase (230 U/mg solid), and 17β-estradiol were obtained from Sigma (St. Louis, MO). Dextran-coated charcoal was obtained from Yamasa (Choshi, Japan). Taq polymerase, 10 × PCR buffer, and 25 mM MgCl₂; were obtained from Perkin-Elmer Corp. (Branchburg, NJ). QiAmp tissue kit for the extraction of genomic DNA was purchased from QiAGEN (Hilden, Germany). A RT-PCR kit containing random primer, Moloney murine leukemia virus-reverse transcriptase, and 10 × first strand buffer was obtained from Stratagene (La Jolla, CA). A PCR MIMIC Construction Kit for competitive PCR was obtained from CLONTECH Laboratories, Inc. (Palo Alto, CA).

Animals

VDR null mutant mice were generated by gene targeting as described previously (7); the locus targeted for the disruption of the VDR gene included exon 2, and the mutant locus contained the neomycin resistance gene. Mice were weaned at 3 weeks of age and were then fed ad libitum distilled water and a chow diet (MF, Oriental Yeast, Tokyo, Japan; ingredients: 11.1 mg/g calcium, 8.3 mg/g phosphorus, and 1.08 IU/g vitamin D₃) or a high calcium diet (9) (Clea Japan, Inc., Tokyo, Japan; ingredients: 20.0 mg/g calcium, 12.5 mg/g phosphorus, 1.08 IU/g vitamin D₃, and 200 mg/g lactose). The mice were maintained under specific pathogen-free conditions with a 12-h light, 12-h dark cycle. They were bred as heterozygotes. The studies were reviewed and approved by the institutional committee of animal care and use of Okayama University Medical School.

The VDR genotypes were determined by analyzing genomic DNA obtained from each mouse at approximately 10 days after birth. Genomic DNA was extracted from tail clippings with the QiAmp tissue kit and was amplified by multiplex PCR using two sets of primers specific for the wild-type exon 2 of VDR gene and for the neomycin resistance gene, respectively. To this end, we recloned murine exon 2 of VDR gene and sequenced it. Novel primers with the sequences of 5′-CCT CCA TCC C'TG TAA GAA GA-3′ and 5′-CAA AGA ACT GCC ACC CAC TC-3′
were prepared. Another set of primers (5′-TGA ATG AAC AGC AGG AGC AGC AGG-3′ and 5′-AGG GTG AGA TGA CAG GAG ATC-3′) for detection of the neomycin resistance gene (10) was also prepared. The reaction mixture (50 μl) contained DNA template (4 μl), two of the primer sets (0.4 μM each), Taq polymerase (1 U), 5 μl of 10× PCR buffer, MgCl₂ (1.5 mM), and a deoxy-NTP mixture (0.2 mM). The amplification included an initial denaturation step at 94°C for 5 min, followed by 30 cycles of denaturation at 94°C (1 min), annealing at 55°C (1 min), and extension at 72°C (2 min), and an additional extension step at 72°C for 7 min. The amplified products were analyzed by 3% agarose gel electrophoresis and ethidium bromide staining. The expected sizes of the products were 130 bp for exon 2 of VDR and 150 bp for the neomycin resistance gene.

Determination of P450arom activity

Activities of P450arom in ovaries were determined from the liberation of [3H]H₂O from [1β,3H]androstenedione essentially according to previously reported methods (11, 12). The ovaries were homogenized with 10 times the volume of 10 mM potassium phosphate buffer (pH 7.4). The reaction was carried out by incubating a 200-μl reaction mixture containing potassium phosphate buffer (pH 7.4), [1β-3H]androstenedione (200 nM; 0.98 Ci), NADPH (10 mM), and 20 μl of the homogenate (10–20 μg protein) at 37°C for 5–30 min and was terminated by adding 100 μl 25% (wt/vol) trichloroacetic acid. To remove unreacted [1β]androstenedione, the reaction mixture was treated with 100 μl dextran-charcoal, then centrifuged at 12000 × g for 5 min to obtain the supernatant. To further remove [1β]androstenedione, a 300-μl aliquot of the supernatant was diluted with 700 μl water and extracted with 2.5 ml chloroform. The radioactivity of the aqueous layer containing [3H]H₂O was measured in a liquid scintillation counter. A reaction mixture without the homogenate was used as a blank. From linear plots of the amounts of the product against reaction times, P450arom activities were determined in terms of picomoles of [3H]H₂O liberated per min/mg protein.

RT-PCR analysis for CYP19 gene expression and estrogen receptor α (ERα) and ERβ gene expression

Total RNA was extracted from the ovary and the testis by the acid-phenol-chloroform method (14). A RT-PCR analysis was carried out using 2 μg total RNA from the ovary and 5 μg total RNA from the testis, which was reverse transcribed using a random primer and Moloney murine leukemia virus reverse transcriptase in 25 μl, according to the manufacturer’s protocol. An aliquot of the RT reaction was then used as the template for a subsequent PCR.

The complementary DNA (cDNA) for the mouse CYP19 gene was analyzed by PCR using a 50-μl reaction mixture containing cDNA template (2 μl from the ovary sample, 4 μl from the testis sample), specific primers of 5′-TGA GAG AGG TGG AGA CCA GCT GA-3′ and 5′-CAG CTG GAA TCG TCT CAA AA-3′ (0.4 μM each), Taq polymerase (1 U), 5 μl 10× PCR buffer, MgCl₂ (1.75 mM), and a deoxy-NTP mixture (0.2 mM). The reaction procedure for the amplification was as follows: an initial denaturation step at 95°C for 5 min, 35 cycles of 95°C (1 min), 56°C (2 min), and 72°C (2 min); and an extension step at 72°C for 10 min. The products were analyzed by 2% agarose gel electrophoresis and ethidium bromide staining. The expected size of the products was 526 bp. Direct sequencing of the 526-bp PCR product revealed a corresponding sequence in P450arom messenger RNA (mRNA). The image of the UV-illuminated gels was stored in a digital form and analyzed by a computerized image analyzing system (ATTO densitograph, ATTO Corp., Tokyo, Japan).

The cDNA for ERα and ERβ genes were analyzed by previously described methods (15, 16). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was coamplified to serve as an internal control. Each band was normalized to the value of GAPDH.

Competitive PCR analysis for quantitative CYP19 gene expression

The cDNA for mouse CYP19 gene after the calcium supplementation was analyzed by competitive PCR. The competitive sequence was constructed by PCR using PCR MIMICS as a template according to the manufacturer’s protocol. The competitive template used was 4, 4 × 10⁻⁷, 4 × 10⁻⁶, 4 × 10⁻⁵, and 4 × 10⁻⁴ fm in each 50-μl reaction mixture. The expected size of the products was 350 bp.

Serum chemistries

LH levels and FSH levels were measured using an enzyme-linked immunosorbent assay for rat LH and FSH (Amersham Pharmacia Bio- tech, Aylesbury, UK). Estradiol levels were measured by RIA (Diagnostic Products, Los Angeles, CA) at Mitubisih BCL (Tokyo, Japan). Calcium levels were measured using the o-cresol phthalein complexation method (Wako, Osaka, Japan). Phosphorous levels were measured using the p-methylaminophenol method (Wako).

Sperm function

Sperm counts and motility were determined. Sperm were collected from the epididymides of 11-week-old heterozygous and VDR null mutant mice. Sperm suspensions were prepared by mincing the excised cauda epididymides in 0.5 ml capacitation medium (17, 18). After allowing 15 min for sperm dispersion, particulate tissue was removed, and aliquots of the epididymal suspension were diluted 1:5 in the medium.

Sperm counts and the estimated percentage of motile sperm were determined visually by phase microscopy.

Histological analysis

Testes were removed from mice, preincubated with OCT compound (Miles, Elkhart, IL), and then frozen with liquid nitrogen. Five-micron sections, cut with a cryostat, were collected on poly-l-lysine-coated slide glasses. The sections were stained with methyl green.

Estrogen supplementation

17β-Estradiol was given to VDR null mutant male mice at 5–10 weeks of age (10 ng/head/day) (19) by microosmotic pump (Alzet, Palo Alto, CA). After 5 weeks of treatment with 17β-estradiol, mice were killed, and the histology of the testes, sperm function, aromatase activity in the testes, the expression level of the CYP19 gene in the testes, and serum levels of calcium, LH, and FSH were analyzed. 17β-Estradiol was given to 7-week-old VDR null male mice (100 ng/head/day) (19) by ip injection for 7 days. After treatment with 17β-estradiol, mice were killed, and aromatase activity in the ovaries was measured.

Statistical analysis

Values are given as the mean ± SEM. Statistical analysis was performed using unpaired Student’s t-test and ANOVA, followed by Fisher’s protected least significant difference. P < 0.05 was considered significant.

Results

Low P450arom activity and CYP19 gene expression in gonads of the VDR null mutant mice

The activities of P450arom in the ovaries, testes, and epididymides were measured, and the results obtained are
shown in Fig. 1A. In the ovaries of the wild-type (VDR\({}^{+/+}\)) mice, the enzyme activities at 4 and 7 weeks of age were 0.102 ± 0.018 (mean ± SEM; n = 4) and 0.357 ± 0.048 (n = 4) pmol [\(^3\)H]H\(_2\)O liberated/min/mg protein, respectively. In the 7-week-old heterozygous (VDR\({}^{-/-}\)) mice, the activity was 0.295 ± 0.035 (n = 4). No significant difference was found between the VDR\({}^{+/+}\) and VDR\({}^{-/-}\) mice in P450arom activity. Samples from the VDR\({}^{+/+}\) and VDR\({}^{-/-}\) female mice at 7 weeks of age were obtained at the time of estrus, as evidenced by labial swelling and reddening of vaginal membranes. The VDR null mutant (VDR\({}^{-/-}\)) female mice never showed such a genital appearance. P450arom activity in the 7-week-old VDR\({}^{-/-}\) mice was 0.087 ± 0.011 (n = 4). This value was 24.4% of that in the 7-week-old VDR\({}^{+/+}\) mice and was similar to that in the 4-week-old VDR\({}^{-/-}\) mice (just after weaning).

As shown in Fig. 1B, P450arom activity in the testes of 10-week-old VDR\({}^{+/+}\) mice was 0.354 ± 0.020 pmol [\(^3\)H]H\(_2\)O liberated/h/mg protein (mean ± SEM; n = 4), which is approximately 1/60th the value in the ovaries of 7-week-old VDR\({}^{+/+}\) female mice. P450arom activity in the testes of 10-week-old VDR\({}^{-/-}\) mice was 0.207 ± 0.028 (n = 5) pmol [\(^3\)H]H\(_2\)O liberated/h/mg protein. This level was 58.5% of that in 10-week-old VDR\({}^{+/+}\) mice (\(P < 0.005\)). In the epididymis, the level of P450arom activity in 10-week-old VDR\({}^{-/-}\) mice was 0.225 ± 0.049, which was 34.6% of that in VDR\({}^{+/+}\) mice (0.650 ± 0.118; n = 4; \(P < 0.01\)).

To evaluate the level of CYP19 gene expression, we applied a RT-PCR procedure. The results presented in Fig. 2 indicated that the ovary and testis of VDR\({}^{-/-}\) mice expressed the mRNA of the CYP19 gene, but the expression levels of the CYP19 gene were markedly decreased. Data from scans of the PCR gels are provided in Table 1. The expression levels of CYP19 gene in the ovary and testis of heterozygous (VDR\({}^{-/+}\)) mice were similar to those in VDR\({}^{+/+}\) mice (data not shown). The PCR reactions without RT had no products. The results of competitive PCR were consistent with those of this RT-PCR.

Abnormalities in gonads in the male VDR null mutant mice

Sperm functions. After incubation in capacitation medium for 15 min, 50–60% of the sperm from the cauda epididymides of male VDR\({}^{-/-}\) mice were motile, whereas the percentage of sperm motile in the VDR\({}^{-/-}\) males declined from 15% to less than 1% at 10 weeks of age. As shown in Table 2, the

Fig. 1. Activities of P450arom in ovaries (A). Values are the mean ± SEM. The black bar presents the activity of enzyme in VDR\({}^{+/+}\) mice at 7 weeks of age. The white bars present those of VDR\({}^{-/-}\) mice at 4 and 7 weeks of age. The hatched bar presents that of VDR\({}^{-/-}\) mice at 7 weeks of age. Activities of P450arom were measured in VDR\({}^{+/+}\) and VDR\({}^{-/-}\) female mice at 7 weeks of age that were in estrous, as evidenced by labial swelling and reddening of vaginal membranes. Activities of P450arom in testes and epididymis of 10-week-old mice (B). The P450arom activity was defined in terms of picomoles of [\(^3\)H]H\(_2\)O liberated per h/mg protein because of lower levels of the activities per mg protein. Values in testes and epididymis are approximately 1/60th of those in ovaries. \(^{**}, P < 0.01\) compared with wild-type mice. n = 4–5.

Fig. 2. Left, RT-PCR amplification of mRNA of CYP19 gene in the ovary (35 cycles). Lane 1, PCR amplification without RT. Lanes 2 and 3, RT-PCR amplification of mRNA of CYP19 gene in the ovary of VDR\({}^{-/-}\) at 7 weeks of age; lanes 4 and 5, RT-PCR amplification of mRNA of CYP19 gene in the ovary of VDR\({}^{+/+}\) at 7 weeks of age. Right, RT-PCR amplification of mRNA of CYP19 gene in the testes (35 cycles). Lanes 1 and 2, RT-PCR amplification of mRNA of CYP19 gene in the testes of VDR\({}^{-/-}\) at 10 weeks of age; lane 3 and 4, RT-PCR amplification of mRNA of CYP19 gene in the testes of VDR\({}^{+/+}\) at 10 weeks of age; lane 5, PCR amplification without RT. Each lane of the same phenotype represents a different animal. Figures show data representative of three independent experiments. Reduced CYP19 gene mRNA expressions in the ovary and the testis of VDR\({}^{-/-}\) mice were observed in both sexes. The scanned data are shown in Table 1.
TABLE 1. The scanned data of RT-PCR amplification of mRNA of CYP19 gene in the ovary (7 weeks of age) and the testes (10 weeks of age)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Ovary</th>
<th>Testis</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDR<sup>−/−</sup></td>
<td>0.019 ± 0.005 (10)</td>
<td>0.062 ± 0.011 (10)</td>
</tr>
<tr>
<td>VDR<sup>+</sup></td>
<td>0.462 ± 0.044 (10)</td>
<td>0.537 ± 0.026 (10)</td>
</tr>
<tr>
<td>P</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The scanned data are expressed as the ratio of CYP19/GAPDH. Values are given as the mean ± SEM. The numbers in parentheses show the number of animals analyzed.

TABLE 2. Sperm function

<table>
<thead>
<tr>
<th>Sperm count (×10<sup>6</sup>/ml)</th>
<th>Sperm motility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDR<sup>−/−</sup></td>
<td>VDR<sup>+/+</sup></td>
</tr>
<tr>
<td>VDR<sup>−/−</sup></td>
<td>8.8 ± 5.5 (4)</td>
</tr>
<tr>
<td>VDR<sup>+/+</sup></td>
<td>53.7 ± 2.7 (4)</td>
</tr>
<tr>
<td>P</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Values are given as the mean ± SEM. The numbers in parentheses show the number of animals analyzed. P values are results of t tests for VDR^{−/−} vs. VDR^{+/+}.

Effect of estrogen supplementation

After estrogen supplementation of VDR null mutant male mice, the histology of the testes revealed no apparent abnormality of the lumen of the seminiferous tubules or epithelial cells at 10 weeks of age, as shown in Fig. 4D. The sperm count and motility in the estrogen-treated mice (n = 3) were increased to the same level in the heterozygous mice [count, 47.7 ± 5.0 × 10⁶/ml vs. 26.3 ± 7.3 × 10⁶/ml in VDR^{−/−} without treatment (P < 0.05); motility: 47.0 ± 3.6% vs. 6.0 ± 4.6% in VDR^{−/−} without treatment (P = 0.0001)]. The P450arom activity in the testes of VDR^{−/−} mice with estrogen treatment was increased (0.328 ± 0.018 pmol [1⁴H]H₂O liberated/h·mg protein vs. 0.207 ± 0.028 in the VDR^{−/−} without treatment; n = 3; P = 0.03). The expression level of the CYP19 gene in the testis with estrogen supplementation was analyzed by competitive PCR. The level in VDR^{−/−} was 0.6 ± 0.2 attomoles (attmol; 10^{−18} mol). After estrogen treatment, the expression level was significantly increased to 16.7 ± 3.3 attomol (P < 0.0001). This level was similar to the level in VDR^{+/+} (23.3 ± 8.8 attomol; P = 0.613). The serum LH level was decreased to 4.13 ± 0.20 ng/ml (n = 3), and the serum FSH level was decreased to 208.7 ± 10.5 ng/ml (n = 3) after the supplementation (P = 0.0003 and <0.0001 respectively, compared with VDR^{−/−} male mice at 8 weeks of age). The serum calcium level was not increased (6.4 ± 0.1 vs. 8.30 ± 0.26 mg/dl in the VDR^{+/+} mice; P = 0.0008).
FIG. 4. Histology of testes from VDR^{−/−} mice and VDR^{+/−} mice in methyl green stain. A, The testis of a 10-week-old VDR^{−/−} mouse. The seminiferous tubules were at different stages of spermatogenesis, and the diameter of the lumen and the thickness of the seminiferous epithelium vary with the stage of spermatogenesis (arrow); B, the testis of a 10-week-old VDR^{−/−} mouse. The lumen of the seminiferous tubules was often dilated (arrows). The thickness of the seminiferous epithelium is less than in 10-week-old control mice. C, The testis of a 15-week-old VDR^{−/−} mouse. The lumen was more widely dilated (asterisks), the seminiferous epithelium is atrophic in many tubules, and spermatogenesis is rare. D, The testis of a 10-week-old VDR^{−/−} mouse with estrogen treatment revealed no change. The seminiferous tubules were at different stages of spermatogenesis (arrow), and the diameter of the lumen and the thickness of the seminiferous epithelium vary with the stage of spermatogenesis. E, The testis of a 10-week-old VDR^{−/−} mouse with calcium supplementation revealed dilated lumen in some seminiferous tubules (asterisks). Bar, 100 μm.
in the male mice, the P450arom activity in the ovary of VDR-/- mice (n = 3) with estrogen treatment was increased (0.293 ± 0.028 pmol \[^3H\text{H}_2\text{O} \text{liberated/mg protein} \text{vs.} 0.087 ± 0.011 \text{in the VDR}+/+ \text{without treatment}; P < 0.0001).

The expression levels of ER\textalpha{} and ER\textbeta{} in the ovary and testis of the VDR null mutant mice were the same as those in the wild-type mice (Fig. 5). In the ovary, the ratios of the expression level of ER\textalpha{}/GAPDH in VDR-/- and VDR+/+ were 0.877 ± 0.167 and 0.998 ± 0.078, respectively, and the ratios of the expression level of ER\textbeta{}/GAPDH in VDR-/- and VDR+/+ were 7.190 ± 0.622 and 8.647 ± 0.891, respectively. In the testis, the expression levels of ER\textalpha{}/GAPDH in VDR-/- and VDR+/+ were 0.613 ± 0.029 and 0.642 ± 0.057, respectively, and the ratios of the expression level of ER\textbeta{}/GAPDH were 0.968 ± 0.109 and 1.027 ± 0.084, respectively. The scanned data revealed that there was no significant difference between VDR-/- and VDR+/+ mice in either ER expression.

Effect of calcium supplementation

The serum calcium level in the VDR null mutant mice given a normal diet (MF) was 5.36 ± 0.25 mg/dl (mean ± SEM; n = 9) at the age of 7 weeks. The serum calcium level in VDR-/- mice was 8.30 ± 0.26 mg/dl (n = 10) at this age. To correct the hypocalcemia, the VDR null mutant mice (n = 10) were fed a high calcium diet from the time of weaning (3 weeks).

TABLE 3. Serum estradiol values

<table>
<thead>
<tr>
<th></th>
<th>Male (10 weeks)</th>
<th>Female (8 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDR+/+</td>
<td>7.3 ± 1.5 (5)</td>
<td>19.4 ± 1.8 (5)</td>
</tr>
<tr>
<td>VDR-/-</td>
<td>4.5 ± 2.4 (4)</td>
<td>3.3 ± 1.3* (5)</td>
</tr>
<tr>
<td>VDR-/- with Ca supplement</td>
<td>6.7 ± 2.7 (4)</td>
<td>5.6 ± 2.6* (4)</td>
</tr>
</tbody>
</table>

Values are given as the mean ± SEM (picograms per ml). The numbers in parentheses show the number of animals analyzed.

* P < 0.01 compared with VDR-/- female mice at 8 weeks of age.

TABLE 4. Serum LH and FSH values

<table>
<thead>
<tr>
<th></th>
<th>3 weeks</th>
<th>8 weeks</th>
<th>12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDR+/+ FEMALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>0.7 ± 0.1 (4)</td>
<td>1.2 ± 0.3 (4)</td>
<td>ND</td>
</tr>
<tr>
<td>FSH</td>
<td>165.0 ± 18.0 (4)</td>
<td>262.8 ± 6.1 (4)</td>
<td>ND</td>
</tr>
<tr>
<td>VDR-/- MALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>ND</td>
<td>0.97 ± 0.04 (4)</td>
<td>ND</td>
</tr>
<tr>
<td>FSH</td>
<td>ND</td>
<td>208.5 ± 12.8 (4)</td>
<td>ND</td>
</tr>
<tr>
<td>VDR-/- FEMALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>0.98 ± 0.04 (3)</td>
<td>5.8 ± 0.4* (4)</td>
<td>8.4 ± 1.0 (4)</td>
</tr>
<tr>
<td>FSH</td>
<td>204.0 ± 24.0 (3)</td>
<td>490.8 ± 43.6* (4)</td>
<td>473.0 ± 25.0 (4)</td>
</tr>
<tr>
<td>VDR-/- MALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>ND</td>
<td>8.5 ± 0.8* (4)</td>
<td>7.1 ± 0.5 (3)</td>
</tr>
<tr>
<td>FSH</td>
<td>ND</td>
<td>426.3 ± 23.5* (4)</td>
<td>445.5 ± 5.5 (3)</td>
</tr>
</tbody>
</table>

VDR-/- male with estrogen supplementation (10 weeks)

<table>
<thead>
<tr>
<th></th>
<th>3 weeks</th>
<th>8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>4.1 ± 0.2* (3)</td>
<td>FSH 208.7 ± 10.5* (3)</td>
</tr>
</tbody>
</table>

VDR-/- with calcium supplementation (8 weeks)

<table>
<thead>
<tr>
<th></th>
<th>3 weeks</th>
<th>8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>5.9 ± 0.2* (3)</td>
<td>FSH 385.0 ± 32.0* (3)</td>
</tr>
<tr>
<td>MALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>8.1 ± 0.3* (3)</td>
<td>FSH 310.0 ± 16.0* (3)</td>
</tr>
</tbody>
</table>

Values are given as the mean ± SEM (nanograms per ml). The numbers in parentheses show the number of animals analyzed. ND, Not determined.

* P < 0.01 compared with VDR+/+ mice at 8 weeks of age.

b P < 0.001 compared with VDR-/- mice at 8 weeks of age. LH was measured in wild-type female mice at 8 weeks of age that were in estrous, as evidenced by labial swelling and reddening of vaginal membranes.
count was increased to $44.0 \pm 5.3 \times 10^6$ /ml, but was not significantly different compared with that in VDR^{-/-} animals without treatment ($P = 0.09$). Sperm motility was significantly increased to 39.3% compared with that in VDR^{-/-} mice without treatment ($P = 0.0015$).

Discussion

Previous studies suggested that vitamin D has some role in reproductive functions. The VDR is expressed in the ovary and testis (6), suggesting that vitamin D has a role in these organs. Vitamin D deficiency caused gonadal insufficiency in rats. The overall fertility of the female vitamin D-deficient rats was reduced to 75%, and the litter size was reduced to 30% of the values in vitamin D-replete females (19). The presence of sperms in the vaginal tract of females mated by vitamin D-deficient males was reduced to 45% compared with that in matings by vitamin D-replete males (20).

In female VDR null mutant mice, uterine hypoplasia with impaired folliculogenesis was observed, and estrogen supplementation increased uterine weight (7). These results indicated that estrogen deficiency caused impaired folliculogenesis and uterine hypoplasia in female VDR null mutant mice. In male VDR null mutant mice in this study, a transient increase in testicular weight was observed, and decreased sperm counts and motility with histological abnormality in the testes were found. These findings in VDR null mutant male mice were similar to those in ERα knockout mice (18, 21, 22). In the male gonads of ERα knockout mice, the fluid reabsorption in efferent ductules of the testis was abnormal (22). In our study of VDR null mutant male mice, estrogen deficiency appeared to cause gonadal insufficiencies by a mechanism similar to that observed in ERα knockout mice. In addition, aromatase gene-deficient mice (ArKO) showed gonadal insufficiencies, such as under-developed uteri and ovaries (23) and impaired spermatogenesis (24). The phenotypes of gonads of ERα and ArKO paralleled those of the VDR null mutant male mice.

No histological abnormality was observed in the testes of male VDR null mutant mice supplemented with estrogen. The estrogen supplementation protected the testis of VDR null mutant mice by decreased P450_{arom} activity and suppression of VDR^{1/-} mice from histological changes. These results strongly suggested that estrogen deficiency induced by VDR ablation is the cause of the abnormal spermatogenesis in VDR null mutant mice.

Decreases in the activity of P450_{arom} and suppression of CYP19 gene expression in both female and male gonads of the VDR null mutant mice were demonstrated. The CYP19 gene encodes P450_{arom}, the key enzyme for estrogen biosynthesis, which dominantly influences the estrogen level. Furthermore, the expressions of ERα and ERβ genes were normal in gonads in VDR null mutant mice. These results indicated that the estrogen-deficient state in VDR null mutant mice caused by decreased P450_{arom} activity depended on suppressed CYP19 gene expression.

It was reported that normalization of the serum calcium level restored fertility in vitamin D-deficient female and male rats (25, 26) and also prevented some phenotypic abnormalities in the VDR null mutant mice (9). To clarify the influences of severe hypocalcemia, calcium supplementation was performed in the VDR null mutant mice. A high calcium diet increased the serum calcium level to near that in wild-type mice. The normalization of the serum calcium level increased...
expression of the aromatase gene was also considered. Furthermore, the expression level of the CYP19 gene was increased to 10-fold that in VDR null mutant mice without calcium supplementation. The high levels of LH and FSH after normalization of serum calcium meant that the endocrinological state remained abnormal.

Despite the abnormal endocrinological state, some VDR null mutant mice with a normal serum calcium level were fertile. This may explain why other VDR-ablated mice (27) did not show infertility, although the details of the gonadal functions were not reported. The serum calcium levels of these mice were much higher than those of our VDR null mutant mice [1.00–1.09 mm (82% of wild-type mice) vs. 5.36 ± 0.25 mg/dl (65% of wild-type mice)]. In human cases of vitamin D-dependent rickets type II, no gonadal insufficiencies were detected (28, 29). Calcium had been administered to these patients from an early phase. Normalization of the serum calcium level might therefore restore the infertility. It is possible that hypogonadism was generated by nonspecific disruption of the aromatase gene enhancer region. However, it is difficult to consider this possibility. Li model VDR-ablated mice (27) and our VDR null mutant mice revealed similar phenotypes, such as growth retardation, impairment of bone formation, and alopecia, though the phenotypes of the Li model were much milder. In addition, normalization of mineral ion homeostasis prevented the phenotypes, except for alopecia (9). The higher level of serum calcium might cause the milder phenotypes and fertility of the Li model.

It was recently reported that the P450arom activity of human choriocarcinoma cell lines was stimulated by 1,25(OH)2D and that the VDR response element was identified in the CYP19 gene (30). This would suggest that vitamin D regulates the CYP19 gene directly. Using VDR null mutant mice, not vitamin D-deficient mice, we demonstrated that vitamin D acted to regulate estrogen biosynthesis: this regulation could not be explained by the calcitropic activities alone. These results indicated that vitamin D plays a role in estrogen biosynthesis partially by maintaining extracellular calcium homeostasis. However, direct regulation of the expression of the aromatase gene was also considered.

Acknowledgment

We are grateful to Ms. L. Abe for secretarial assistance.

References